Age but not resting-state EEG explains learning and memory performance in a spatial navigation task Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.31234/osf.io/hzgmc_v1
Healthy aging is associated with a decline in spatial cognition, with older adults learning spatial environments more slowly and with less precision compared to younger adults. This study investigated whether resting-state EEG measures could be used to predict differences in age and spatial learning/memory performance in a virtual water maze task among younger and older adults. We recorded eyes-open resting-state EEG from 22 older adults (aged 60-76) and 31 younger adults (aged 18-40) before they completed the NavWell virtual water maze task. Our analysis focused on five EEG frequency bands (delta, theta, alpha, beta, gamma) and their relationship with age and behavioural measures: spatial learning (wayfinding ability & escape latency) and spatial memory (percentage of time spent searching in the goal quadrant). Principal component analysis was used to reduce the EEG variables to absolute and relative power EEG component scores and were examined as predictors. Results revealed that age was a significant, strong predictor of all performance-related outcomes. Though resting-state EEG was not a significant predictor of navigation ability, older adults showed significant differences from younger adults on three of the four EEG component loadings. Specifically, older adults demonstrated reduced low-frequency (delta) and greater high-frequency (beta/gamma) power compared to younger adults. These findings suggest that while resting-state EEG dynamics differ by age, they do not explain age-related differences in spatial navigation performance.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.31234/osf.io/hzgmc_v1
- https://osf.io/hzgmc_v1/download
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411556242
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411556242Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.31234/osf.io/hzgmc_v1Digital Object Identifier
- Title
-
Age but not resting-state EEG explains learning and memory performance in a spatial navigation taskWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-23Full publication date if available
- Authors
-
Conor Thornberry, Robert Fox, Adrianna Wozniak, Seán ComminsList of authors in order
- Landing page
-
https://doi.org/10.31234/osf.io/hzgmc_v1Publisher landing page
- PDF URL
-
https://osf.io/hzgmc_v1/downloadDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://osf.io/hzgmc_v1/downloadDirect OA link when available
- Concepts
-
Task (project management), Electroencephalography, Cognitive psychology, State (computer science), Resting state fMRI, Computer science, Spatial memory, Psychology, Spatial learning, Artificial intelligence, Working memory, Neuroscience, Cognition, Engineering, Algorithm, Systems engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411556242 |
|---|---|
| doi | https://doi.org/10.31234/osf.io/hzgmc_v1 |
| ids.doi | https://doi.org/10.31234/osf.io/hzgmc_v1 |
| ids.openalex | https://openalex.org/W4411556242 |
| fwci | 0.0 |
| type | preprint |
| title | Age but not resting-state EEG explains learning and memory performance in a spatial navigation task |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12805 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8086000084877014 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Cognitive Science and Mapping |
| topics[1].id | https://openalex.org/T11904 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.7160999774932861 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2203 |
| topics[1].subfield.display_name | Automotive Engineering |
| topics[1].display_name | Spatial Cognition and Navigation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780451532 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6892988681793213 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[0].display_name | Task (project management) |
| concepts[1].id | https://openalex.org/C522805319 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6658348441123962 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[1].display_name | Electroencephalography |
| concepts[2].id | https://openalex.org/C180747234 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5347427725791931 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[2].display_name | Cognitive psychology |
| concepts[3].id | https://openalex.org/C48103436 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5135629177093506 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q599031 |
| concepts[3].display_name | State (computer science) |
| concepts[4].id | https://openalex.org/C66324658 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49613675475120544 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7316120 |
| concepts[4].display_name | Resting state fMRI |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.46939224004745483 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C43729271 |
| concepts[6].level | 4 |
| concepts[6].score | 0.4435359239578247 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3560550 |
| concepts[6].display_name | Spatial memory |
| concepts[7].id | https://openalex.org/C15744967 |
| concepts[7].level | 0 |
| concepts[7].score | 0.42961257696151733 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[7].display_name | Psychology |
| concepts[8].id | https://openalex.org/C2985665543 |
| concepts[8].level | 3 |
| concepts[8].score | 0.41302067041397095 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3560550 |
| concepts[8].display_name | Spatial learning |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3605308532714844 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C21963081 |
| concepts[10].level | 3 |
| concepts[10].score | 0.3015090823173523 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11337567 |
| concepts[10].display_name | Working memory |
| concepts[11].id | https://openalex.org/C169760540 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2932779788970947 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[11].display_name | Neuroscience |
| concepts[12].id | https://openalex.org/C169900460 |
| concepts[12].level | 2 |
| concepts[12].score | 0.13234755396842957 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2200417 |
| concepts[12].display_name | Cognition |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.08066579699516296 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C201995342 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[15].display_name | Systems engineering |
| keywords[0].id | https://openalex.org/keywords/task |
| keywords[0].score | 0.6892988681793213 |
| keywords[0].display_name | Task (project management) |
| keywords[1].id | https://openalex.org/keywords/electroencephalography |
| keywords[1].score | 0.6658348441123962 |
| keywords[1].display_name | Electroencephalography |
| keywords[2].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[2].score | 0.5347427725791931 |
| keywords[2].display_name | Cognitive psychology |
| keywords[3].id | https://openalex.org/keywords/state |
| keywords[3].score | 0.5135629177093506 |
| keywords[3].display_name | State (computer science) |
| keywords[4].id | https://openalex.org/keywords/resting-state-fmri |
| keywords[4].score | 0.49613675475120544 |
| keywords[4].display_name | Resting state fMRI |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.46939224004745483 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/spatial-memory |
| keywords[6].score | 0.4435359239578247 |
| keywords[6].display_name | Spatial memory |
| keywords[7].id | https://openalex.org/keywords/psychology |
| keywords[7].score | 0.42961257696151733 |
| keywords[7].display_name | Psychology |
| keywords[8].id | https://openalex.org/keywords/spatial-learning |
| keywords[8].score | 0.41302067041397095 |
| keywords[8].display_name | Spatial learning |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.3605308532714844 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/working-memory |
| keywords[10].score | 0.3015090823173523 |
| keywords[10].display_name | Working memory |
| keywords[11].id | https://openalex.org/keywords/neuroscience |
| keywords[11].score | 0.2932779788970947 |
| keywords[11].display_name | Neuroscience |
| keywords[12].id | https://openalex.org/keywords/cognition |
| keywords[12].score | 0.13234755396842957 |
| keywords[12].display_name | Cognition |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.08066579699516296 |
| keywords[13].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.31234/osf.io/hzgmc_v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://osf.io/hzgmc_v1/download |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.31234/osf.io/hzgmc_v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5035205791 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5281-0641 |
| authorships[0].author.display_name | Conor Thornberry |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Conor Thornberry |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5110867791 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Robert Fox |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Robert Fox |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5010602197 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Adrianna Wozniak |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Adrianna Wozniak |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5003797810 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1161-1398 |
| authorships[3].author.display_name | Seán Commins |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Sean Commins |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://osf.io/hzgmc_v1/download |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-06-24T00:00:00 |
| display_name | Age but not resting-state EEG explains learning and memory performance in a spatial navigation task |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12805 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8086000084877014 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Cognitive Science and Mapping |
| related_works | https://openalex.org/W3048960637, https://openalex.org/W2058943069, https://openalex.org/W4391256093, https://openalex.org/W1994295248, https://openalex.org/W2092908104, https://openalex.org/W2066771945, https://openalex.org/W2018219434, https://openalex.org/W2058563612, https://openalex.org/W1864420117, https://openalex.org/W564590216 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.31234/osf.io/hzgmc_v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://osf.io/hzgmc_v1/download |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.31234/osf.io/hzgmc_v1 |
| primary_location.id | doi:10.31234/osf.io/hzgmc_v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://osf.io/hzgmc_v1/download |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.31234/osf.io/hzgmc_v1 |
| publication_date | 2025-06-23 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 46, 150, 163 |
| abstract_inverted_index.22 | 62 |
| abstract_inverted_index.31 | 68 |
| abstract_inverted_index.We | 56 |
| abstract_inverted_index.as | 143 |
| abstract_inverted_index.be | 34 |
| abstract_inverted_index.by | 210 |
| abstract_inverted_index.do | 213 |
| abstract_inverted_index.in | 7, 39, 45, 118, 218 |
| abstract_inverted_index.is | 2 |
| abstract_inverted_index.of | 114, 154, 166, 179 |
| abstract_inverted_index.on | 85, 177 |
| abstract_inverted_index.to | 23, 36, 127, 132, 198 |
| abstract_inverted_index.EEG | 31, 60, 87, 130, 137, 160, 182, 207 |
| abstract_inverted_index.Our | 82 |
| abstract_inverted_index.age | 40, 99, 148 |
| abstract_inverted_index.all | 155 |
| abstract_inverted_index.and | 18, 41, 53, 67, 95, 100, 110, 134, 140, 192 |
| abstract_inverted_index.not | 162, 214 |
| abstract_inverted_index.the | 76, 119, 129, 180 |
| abstract_inverted_index.was | 125, 149, 161 |
| abstract_inverted_index.This | 26 |
| abstract_inverted_index.age, | 211 |
| abstract_inverted_index.five | 86 |
| abstract_inverted_index.four | 181 |
| abstract_inverted_index.from | 61, 174 |
| abstract_inverted_index.goal | 120 |
| abstract_inverted_index.less | 20 |
| abstract_inverted_index.maze | 49, 80 |
| abstract_inverted_index.more | 16 |
| abstract_inverted_index.task | 50 |
| abstract_inverted_index.that | 147, 204 |
| abstract_inverted_index.they | 74, 212 |
| abstract_inverted_index.time | 115 |
| abstract_inverted_index.used | 35, 126 |
| abstract_inverted_index.were | 141 |
| abstract_inverted_index.with | 4, 10, 19, 98 |
| abstract_inverted_index.(aged | 65, 71 |
| abstract_inverted_index.These | 201 |
| abstract_inverted_index.aging | 1 |
| abstract_inverted_index.among | 51 |
| abstract_inverted_index.bands | 89 |
| abstract_inverted_index.beta, | 93 |
| abstract_inverted_index.could | 33 |
| abstract_inverted_index.older | 11, 54, 63, 169, 186 |
| abstract_inverted_index.power | 136, 196 |
| abstract_inverted_index.spent | 116 |
| abstract_inverted_index.study | 27 |
| abstract_inverted_index.task. | 81 |
| abstract_inverted_index.their | 96 |
| abstract_inverted_index.three | 178 |
| abstract_inverted_index.water | 48, 79 |
| abstract_inverted_index.while | 205 |
| abstract_inverted_index.18-40) | 72 |
| abstract_inverted_index.60-76) | 66 |
| abstract_inverted_index.Though | 158 |
| abstract_inverted_index.adults | 12, 64, 70, 170, 176, 187 |
| abstract_inverted_index.alpha, | 92 |
| abstract_inverted_index.before | 73 |
| abstract_inverted_index.differ | 209 |
| abstract_inverted_index.escape | 108 |
| abstract_inverted_index.gamma) | 94 |
| abstract_inverted_index.memory | 112 |
| abstract_inverted_index.reduce | 128 |
| abstract_inverted_index.scores | 139 |
| abstract_inverted_index.showed | 171 |
| abstract_inverted_index.slowly | 17 |
| abstract_inverted_index.strong | 152 |
| abstract_inverted_index.theta, | 91 |
| abstract_inverted_index.(delta) | 191 |
| abstract_inverted_index.(delta, | 90 |
| abstract_inverted_index.Healthy | 0 |
| abstract_inverted_index.NavWell | 77 |
| abstract_inverted_index.Results | 145 |
| abstract_inverted_index.ability | 106 |
| abstract_inverted_index.adults. | 25, 55, 200 |
| abstract_inverted_index.decline | 6 |
| abstract_inverted_index.explain | 215 |
| abstract_inverted_index.focused | 84 |
| abstract_inverted_index.greater | 193 |
| abstract_inverted_index.predict | 37 |
| abstract_inverted_index.reduced | 189 |
| abstract_inverted_index.spatial | 8, 14, 42, 103, 111, 219 |
| abstract_inverted_index.suggest | 203 |
| abstract_inverted_index.virtual | 47, 78 |
| abstract_inverted_index.whether | 29 |
| abstract_inverted_index.younger | 24, 52, 69, 175, 199 |
| abstract_inverted_index.ability, | 168 |
| abstract_inverted_index.absolute | 133 |
| abstract_inverted_index.analysis | 83, 124 |
| abstract_inverted_index.compared | 22, 197 |
| abstract_inverted_index.dynamics | 208 |
| abstract_inverted_index.examined | 142 |
| abstract_inverted_index.findings | 202 |
| abstract_inverted_index.latency) | 109 |
| abstract_inverted_index.learning | 13, 104 |
| abstract_inverted_index.measures | 32 |
| abstract_inverted_index.recorded | 57 |
| abstract_inverted_index.relative | 135 |
| abstract_inverted_index.revealed | 146 |
| abstract_inverted_index.& | 107 |
| abstract_inverted_index.Principal | 122 |
| abstract_inverted_index.completed | 75 |
| abstract_inverted_index.component | 123, 138, 183 |
| abstract_inverted_index.eyes-open | 58 |
| abstract_inverted_index.frequency | 88 |
| abstract_inverted_index.loadings. | 184 |
| abstract_inverted_index.measures: | 102 |
| abstract_inverted_index.outcomes. | 157 |
| abstract_inverted_index.precision | 21 |
| abstract_inverted_index.predictor | 153, 165 |
| abstract_inverted_index.searching | 117 |
| abstract_inverted_index.variables | 131 |
| abstract_inverted_index.associated | 3 |
| abstract_inverted_index.cognition, | 9 |
| abstract_inverted_index.navigation | 167, 220 |
| abstract_inverted_index.quadrant). | 121 |
| abstract_inverted_index.(percentage | 113 |
| abstract_inverted_index.(wayfinding | 105 |
| abstract_inverted_index.age-related | 216 |
| abstract_inverted_index.behavioural | 101 |
| abstract_inverted_index.differences | 38, 173, 217 |
| abstract_inverted_index.performance | 44 |
| abstract_inverted_index.predictors. | 144 |
| abstract_inverted_index.significant | 164, 172 |
| abstract_inverted_index.(beta/gamma) | 195 |
| abstract_inverted_index.demonstrated | 188 |
| abstract_inverted_index.environments | 15 |
| abstract_inverted_index.investigated | 28 |
| abstract_inverted_index.performance. | 221 |
| abstract_inverted_index.relationship | 97 |
| abstract_inverted_index.significant, | 151 |
| abstract_inverted_index.Specifically, | 185 |
| abstract_inverted_index.low-frequency | 190 |
| abstract_inverted_index.resting-state | 30, 59, 159, 206 |
| abstract_inverted_index.high-frequency | 194 |
| abstract_inverted_index.learning/memory | 43 |
| abstract_inverted_index.performance-related | 156 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.10637283 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |