Age prediction using resting-state functional MRI Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1101/2023.12.26.23300530
The increasing lifespan and large individual differences in cognitive capability highlight the importance of comprehending the aging process of the brain. Contrary to visible signs of bodily ageing, like greying of hair and loss of muscle mass, the internal changes that occur within our brains remain less apparent until they impair function. Brain age, distinct from chronological age, reflects our brain’s health status and may deviate from our actual chronological age. Notably, brain age has been associated with mortality and depression. The brain is plastic and can compensate even for severe structural damage by rewiring. Functional characterization offers insights that structural cannot provide. Contrary to the multitude of studies relying on structural magnetic resonance imaging (MRI), we utilize resting-state functional MRI (rsfMRI). We also address the issue of inclusion of subjects with abnormal brain ageing through outlier removal. In this study, we employ the Least Absolute Shrinkage and Selection Operator (LASSO) to identify the 39 most predictive correlations derived from the rsfMRI data. The data is from a cohort of 116 healthy right-handed volunteers, aged 18-18 years (9 81 male female, mean age 8, SD 11) collected at the Mind Research Imaging Center at the National Cheng Kung University. We establish a normal reference model by excluding 68 outliers, which achieves a leave-one-out mean absolute error of 2. 8 years. By asking which additional features that are needed to predict the chronological age of the outliers with a smaller error, we identify correlations predictive of abnormal aging. These are associated with the Default Mode Network (DMN). Our normal reference model has the lowest prediction error among published models evaluated on adult subjects of almost all ages and is thus a candidate for screening for abnormal brain aging that has not yet manifested in cognitive decline. This study advances our ability to predict brain aging and provides insights into potential biomarkers for assessing brain age, suggesting that the role of DMN in brain aging should be studied further.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2023.12.26.23300530
- https://www.medrxiv.org/content/medrxiv/early/2023/12/28/2023.12.26.23300530.full.pdf
- OA Status
- green
- References
- 49
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390322608
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390322608Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2023.12.26.23300530Digital Object Identifier
- Title
-
Age prediction using resting-state functional MRIWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-28Full publication date if available
- Authors
-
Jose Ramon Chang, Zai‐Fu Yao, Shulan Hsieh, Torbjörn E. M. NordlingList of authors in order
- Landing page
-
https://doi.org/10.1101/2023.12.26.23300530Publisher landing page
- PDF URL
-
https://www.medrxiv.org/content/medrxiv/early/2023/12/28/2023.12.26.23300530.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.medrxiv.org/content/medrxiv/early/2023/12/28/2023.12.26.23300530.full.pdfDirect OA link when available
- Concepts
-
Outlier, Resting state fMRI, Ageing, Lasso (programming language), Cohort, Magnetic resonance imaging, Psychology, Neuroimaging, Functional magnetic resonance imaging, Cognition, Brain aging, Gerontology, Medicine, Audiology, Neuroscience, Internal medicine, Artificial intelligence, Computer science, Radiology, World Wide WebTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
49Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390322608 |
|---|---|
| doi | https://doi.org/10.1101/2023.12.26.23300530 |
| ids.doi | https://doi.org/10.1101/2023.12.26.23300530 |
| ids.openalex | https://openalex.org/W4390322608 |
| fwci | 0.0 |
| type | preprint |
| title | Age prediction using resting-state functional MRI |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10241 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Functional Brain Connectivity Studies |
| topics[1].id | https://openalex.org/T10378 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9994000196456909 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Advanced MRI Techniques and Applications |
| topics[2].id | https://openalex.org/T10581 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9958999752998352 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Neural dynamics and brain function |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C79337645 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6596893072128296 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[0].display_name | Outlier |
| concepts[1].id | https://openalex.org/C66324658 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5742087364196777 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7316120 |
| concepts[1].display_name | Resting state fMRI |
| concepts[2].id | https://openalex.org/C500499127 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5094419121742249 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q332154 |
| concepts[2].display_name | Ageing |
| concepts[3].id | https://openalex.org/C37616216 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5003950595855713 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3218363 |
| concepts[3].display_name | Lasso (programming language) |
| concepts[4].id | https://openalex.org/C72563966 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5002090930938721 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1303415 |
| concepts[4].display_name | Cohort |
| concepts[5].id | https://openalex.org/C143409427 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49849939346313477 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q161238 |
| concepts[5].display_name | Magnetic resonance imaging |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4959650933742523 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| concepts[7].id | https://openalex.org/C58693492 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4692509174346924 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q551875 |
| concepts[7].display_name | Neuroimaging |
| concepts[8].id | https://openalex.org/C2779226451 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4538043141365051 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q903809 |
| concepts[8].display_name | Functional magnetic resonance imaging |
| concepts[9].id | https://openalex.org/C169900460 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4416605532169342 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2200417 |
| concepts[9].display_name | Cognition |
| concepts[10].id | https://openalex.org/C2993665655 |
| concepts[10].level | 3 |
| concepts[10].score | 0.41035473346710205 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q4692577 |
| concepts[10].display_name | Brain aging |
| concepts[11].id | https://openalex.org/C74909509 |
| concepts[11].level | 1 |
| concepts[11].score | 0.38850340247154236 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q10387 |
| concepts[11].display_name | Gerontology |
| concepts[12].id | https://openalex.org/C71924100 |
| concepts[12].level | 0 |
| concepts[12].score | 0.38339734077453613 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[12].display_name | Medicine |
| concepts[13].id | https://openalex.org/C548259974 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3607652187347412 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q569965 |
| concepts[13].display_name | Audiology |
| concepts[14].id | https://openalex.org/C169760540 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3593551516532898 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[14].display_name | Neuroscience |
| concepts[15].id | https://openalex.org/C126322002 |
| concepts[15].level | 1 |
| concepts[15].score | 0.21151971817016602 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[15].display_name | Internal medicine |
| concepts[16].id | https://openalex.org/C154945302 |
| concepts[16].level | 1 |
| concepts[16].score | 0.1919422745704651 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[16].display_name | Artificial intelligence |
| concepts[17].id | https://openalex.org/C41008148 |
| concepts[17].level | 0 |
| concepts[17].score | 0.16803887486457825 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[17].display_name | Computer science |
| concepts[18].id | https://openalex.org/C126838900 |
| concepts[18].level | 1 |
| concepts[18].score | 0.08440247178077698 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[18].display_name | Radiology |
| concepts[19].id | https://openalex.org/C136764020 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[19].display_name | World Wide Web |
| keywords[0].id | https://openalex.org/keywords/outlier |
| keywords[0].score | 0.6596893072128296 |
| keywords[0].display_name | Outlier |
| keywords[1].id | https://openalex.org/keywords/resting-state-fmri |
| keywords[1].score | 0.5742087364196777 |
| keywords[1].display_name | Resting state fMRI |
| keywords[2].id | https://openalex.org/keywords/ageing |
| keywords[2].score | 0.5094419121742249 |
| keywords[2].display_name | Ageing |
| keywords[3].id | https://openalex.org/keywords/lasso |
| keywords[3].score | 0.5003950595855713 |
| keywords[3].display_name | Lasso (programming language) |
| keywords[4].id | https://openalex.org/keywords/cohort |
| keywords[4].score | 0.5002090930938721 |
| keywords[4].display_name | Cohort |
| keywords[5].id | https://openalex.org/keywords/magnetic-resonance-imaging |
| keywords[5].score | 0.49849939346313477 |
| keywords[5].display_name | Magnetic resonance imaging |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.4959650933742523 |
| keywords[6].display_name | Psychology |
| keywords[7].id | https://openalex.org/keywords/neuroimaging |
| keywords[7].score | 0.4692509174346924 |
| keywords[7].display_name | Neuroimaging |
| keywords[8].id | https://openalex.org/keywords/functional-magnetic-resonance-imaging |
| keywords[8].score | 0.4538043141365051 |
| keywords[8].display_name | Functional magnetic resonance imaging |
| keywords[9].id | https://openalex.org/keywords/cognition |
| keywords[9].score | 0.4416605532169342 |
| keywords[9].display_name | Cognition |
| keywords[10].id | https://openalex.org/keywords/brain-aging |
| keywords[10].score | 0.41035473346710205 |
| keywords[10].display_name | Brain aging |
| keywords[11].id | https://openalex.org/keywords/gerontology |
| keywords[11].score | 0.38850340247154236 |
| keywords[11].display_name | Gerontology |
| keywords[12].id | https://openalex.org/keywords/medicine |
| keywords[12].score | 0.38339734077453613 |
| keywords[12].display_name | Medicine |
| keywords[13].id | https://openalex.org/keywords/audiology |
| keywords[13].score | 0.3607652187347412 |
| keywords[13].display_name | Audiology |
| keywords[14].id | https://openalex.org/keywords/neuroscience |
| keywords[14].score | 0.3593551516532898 |
| keywords[14].display_name | Neuroscience |
| keywords[15].id | https://openalex.org/keywords/internal-medicine |
| keywords[15].score | 0.21151971817016602 |
| keywords[15].display_name | Internal medicine |
| keywords[16].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[16].score | 0.1919422745704651 |
| keywords[16].display_name | Artificial intelligence |
| keywords[17].id | https://openalex.org/keywords/computer-science |
| keywords[17].score | 0.16803887486457825 |
| keywords[17].display_name | Computer science |
| keywords[18].id | https://openalex.org/keywords/radiology |
| keywords[18].score | 0.08440247178077698 |
| keywords[18].display_name | Radiology |
| language | en |
| locations[0].id | doi:10.1101/2023.12.26.23300530 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | |
| locations[0].pdf_url | https://www.medrxiv.org/content/medrxiv/early/2023/12/28/2023.12.26.23300530.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2023.12.26.23300530 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5030664058 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5587-7828 |
| authorships[0].author.display_name | Jose Ramon Chang |
| authorships[0].countries | TW |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I91807558 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, National Cheng Kung University, Tainan 70, Taiwan |
| authorships[0].institutions[0].id | https://openalex.org/I91807558 |
| authorships[0].institutions[0].ror | https://ror.org/01b8kcc49 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I91807558 |
| authorships[0].institutions[0].country_code | TW |
| authorships[0].institutions[0].display_name | National Cheng Kung University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jose Ramon Chang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Mechanical Engineering, National Cheng Kung University, Tainan 70, Taiwan |
| authorships[1].author.id | https://openalex.org/A5064295651 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9823-9110 |
| authorships[1].author.display_name | Zai‐Fu Yao |
| authorships[1].countries | TW |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I25846049 |
| authorships[1].affiliations[0].raw_affiliation_string | Research Center for Education and Mind Sciences, National Tsing Hua University, Hsinchu 001, Taiwan |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I25846049 |
| authorships[1].affiliations[1].raw_affiliation_string | College of Education, National Tsing Hua University, Hsinchu 30013, Taiwan |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I25846049 |
| authorships[1].affiliations[2].raw_affiliation_string | Basic Kinesiology Group, National Tsing Hua University, Hsinchu 30013, Taiwan |
| authorships[1].affiliations[3].institution_ids | https://openalex.org/I25846049 |
| authorships[1].affiliations[3].raw_affiliation_string | Department of Kinesiology, National Tsing Hua University, Hsinchu 30013, Taiwan |
| authorships[1].institutions[0].id | https://openalex.org/I25846049 |
| authorships[1].institutions[0].ror | https://ror.org/00zdnkx70 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I25846049 |
| authorships[1].institutions[0].country_code | TW |
| authorships[1].institutions[0].display_name | National Tsing Hua University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zai-Fu Yao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Basic Kinesiology Group, National Tsing Hua University, Hsinchu 30013, Taiwan, College of Education, National Tsing Hua University, Hsinchu 30013, Taiwan, Department of Kinesiology, National Tsing Hua University, Hsinchu 30013, Taiwan, Research Center for Education and Mind Sciences, National Tsing Hua University, Hsinchu 001, Taiwan |
| authorships[2].author.id | https://openalex.org/A5000586315 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6247-244X |
| authorships[2].author.display_name | Shulan Hsieh |
| authorships[2].countries | TW |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I91807558 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Psychology, National Cheng Kung University, Tainan 701, Taiwan |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I91807558 |
| authorships[2].affiliations[1].raw_affiliation_string | Institute of Allied Health Sciences, National Cheng Kung University, Tainan 01, Taiwan |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I91807558 |
| authorships[2].affiliations[2].raw_affiliation_string | Department of Public Health, National Cheng Kung University, Tainan 701, Taiwan |
| authorships[2].institutions[0].id | https://openalex.org/I91807558 |
| authorships[2].institutions[0].ror | https://ror.org/01b8kcc49 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I91807558 |
| authorships[2].institutions[0].country_code | TW |
| authorships[2].institutions[0].display_name | National Cheng Kung University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shulan Hsieh |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Psychology, National Cheng Kung University, Tainan 701, Taiwan, Department of Public Health, National Cheng Kung University, Tainan 701, Taiwan, Institute of Allied Health Sciences, National Cheng Kung University, Tainan 01, Taiwan |
| authorships[3].author.id | https://openalex.org/A5039574191 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4867-6707 |
| authorships[3].author.display_name | Torbjörn E. M. Nordling |
| authorships[3].countries | TW |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I91807558 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, National Cheng Kung University, Tainan 70, Taiwan |
| authorships[3].institutions[0].id | https://openalex.org/I91807558 |
| authorships[3].institutions[0].ror | https://ror.org/01b8kcc49 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I91807558 |
| authorships[3].institutions[0].country_code | TW |
| authorships[3].institutions[0].display_name | National Cheng Kung University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Torbjörn E. M. Nordling |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Mechanical Engineering, National Cheng Kung University, Tainan 70, Taiwan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.medrxiv.org/content/medrxiv/early/2023/12/28/2023.12.26.23300530.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Age prediction using resting-state functional MRI |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10241 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Functional Brain Connectivity Studies |
| related_works | https://openalex.org/W2012906904, https://openalex.org/W2756093870, https://openalex.org/W2079106159, https://openalex.org/W2136134918, https://openalex.org/W4230045434, https://openalex.org/W2518476915, https://openalex.org/W2392044770, https://openalex.org/W4381827116, https://openalex.org/W3083724788, https://openalex.org/W3006067566 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2023.12.26.23300530 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2023/12/28/2023.12.26.23300530.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2023.12.26.23300530 |
| primary_location.id | doi:10.1101/2023.12.26.23300530 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | |
| primary_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2023/12/28/2023.12.26.23300530.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2023.12.26.23300530 |
| publication_date | 2023-12-28 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4293100545, https://openalex.org/W3202476286, https://openalex.org/W4313895381, https://openalex.org/W2171250577, https://openalex.org/W2914765137, https://openalex.org/W2009494091, https://openalex.org/W2557390385, https://openalex.org/W2579617530, https://openalex.org/W2602552939, https://openalex.org/W4220800641, https://openalex.org/W2749031055, https://openalex.org/W2996397878, https://openalex.org/W2961560364, https://openalex.org/W3198174135, https://openalex.org/W2020044743, https://openalex.org/W2068375947, https://openalex.org/W1750360268, https://openalex.org/W3157331556, https://openalex.org/W2487770199, https://openalex.org/W4286457184, https://openalex.org/W2052644075, https://openalex.org/W2999319035, https://openalex.org/W2990366895, https://openalex.org/W4294927312, https://openalex.org/W4229455411, https://openalex.org/W4295787952, https://openalex.org/W2964335732, https://openalex.org/W2552208519, https://openalex.org/W4225317643, https://openalex.org/W2952699866, https://openalex.org/W4224300622, https://openalex.org/W3014215482, https://openalex.org/W2165758561, https://openalex.org/W4206055706, https://openalex.org/W2995959638, https://openalex.org/W3040468962, https://openalex.org/W2573102879, https://openalex.org/W3180475931, https://openalex.org/W2089572795, https://openalex.org/W2910313823, https://openalex.org/W4295242468, https://openalex.org/W4283812982, https://openalex.org/W2069088601, https://openalex.org/W2301077564, https://openalex.org/W2135046866, https://openalex.org/W2736045761, https://openalex.org/W3047189326, https://openalex.org/W4383815893, https://openalex.org/W2122825543 |
| referenced_works_count | 49 |
| abstract_inverted_index.8 | 219 |
| abstract_inverted_index.a | 168, 202, 212, 238, 280 |
| abstract_inverted_index.(9 | 178 |
| abstract_inverted_index.2. | 218 |
| abstract_inverted_index.39 | 155 |
| abstract_inverted_index.68 | 208 |
| abstract_inverted_index.8, | 184 |
| abstract_inverted_index.81 | 179 |
| abstract_inverted_index.By | 221 |
| abstract_inverted_index.In | 139 |
| abstract_inverted_index.SD | 185 |
| abstract_inverted_index.We | 123, 200 |
| abstract_inverted_index.at | 188, 194 |
| abstract_inverted_index.be | 325 |
| abstract_inverted_index.by | 94, 206 |
| abstract_inverted_index.in | 8, 293, 321 |
| abstract_inverted_index.is | 84, 166, 278 |
| abstract_inverted_index.of | 14, 19, 26, 31, 35, 108, 128, 130, 170, 217, 234, 245, 273, 319 |
| abstract_inverted_index.on | 111, 270 |
| abstract_inverted_index.to | 23, 105, 152, 229, 301 |
| abstract_inverted_index.we | 117, 142, 241 |
| abstract_inverted_index.11) | 186 |
| abstract_inverted_index.116 | 171 |
| abstract_inverted_index.DMN | 320 |
| abstract_inverted_index.MRI | 121 |
| abstract_inverted_index.Our | 257 |
| abstract_inverted_index.The | 1, 82, 164 |
| abstract_inverted_index.age | 74, 183, 233 |
| abstract_inverted_index.all | 275 |
| abstract_inverted_index.and | 4, 33, 64, 80, 86, 148, 277, 305 |
| abstract_inverted_index.are | 227, 249 |
| abstract_inverted_index.can | 87 |
| abstract_inverted_index.for | 90, 282, 284, 311 |
| abstract_inverted_index.has | 75, 261, 289 |
| abstract_inverted_index.may | 65 |
| abstract_inverted_index.not | 290 |
| abstract_inverted_index.our | 44, 60, 68, 299 |
| abstract_inverted_index.the | 12, 16, 20, 38, 106, 126, 144, 154, 161, 189, 195, 231, 235, 252, 262, 317 |
| abstract_inverted_index.yet | 291 |
| abstract_inverted_index.Kung | 198 |
| abstract_inverted_index.Mind | 190 |
| abstract_inverted_index.Mode | 254 |
| abstract_inverted_index.This | 296 |
| abstract_inverted_index.age, | 54, 58, 314 |
| abstract_inverted_index.age. | 71 |
| abstract_inverted_index.aged | 175 |
| abstract_inverted_index.ages | 276 |
| abstract_inverted_index.also | 124 |
| abstract_inverted_index.been | 76 |
| abstract_inverted_index.data | 165 |
| abstract_inverted_index.even | 89 |
| abstract_inverted_index.from | 56, 67, 160, 167 |
| abstract_inverted_index.hair | 32 |
| abstract_inverted_index.into | 308 |
| abstract_inverted_index.less | 47 |
| abstract_inverted_index.like | 29 |
| abstract_inverted_index.loss | 34 |
| abstract_inverted_index.male | 180 |
| abstract_inverted_index.mean | 182, 214 |
| abstract_inverted_index.most | 156 |
| abstract_inverted_index.role | 318 |
| abstract_inverted_index.that | 41, 100, 226, 288, 316 |
| abstract_inverted_index.they | 50 |
| abstract_inverted_index.this | 140 |
| abstract_inverted_index.thus | 279 |
| abstract_inverted_index.with | 78, 132, 237, 251 |
| abstract_inverted_index.18-18 | 176 |
| abstract_inverted_index.Brain | 53 |
| abstract_inverted_index.Cheng | 197 |
| abstract_inverted_index.Least | 145 |
| abstract_inverted_index.These | 248 |
| abstract_inverted_index.adult | 271 |
| abstract_inverted_index.aging | 17, 287, 304, 323 |
| abstract_inverted_index.among | 266 |
| abstract_inverted_index.brain | 73, 83, 134, 286, 303, 313, 322 |
| abstract_inverted_index.data. | 163 |
| abstract_inverted_index.error | 216, 265 |
| abstract_inverted_index.issue | 127 |
| abstract_inverted_index.large | 5 |
| abstract_inverted_index.mass, | 37 |
| abstract_inverted_index.model | 205, 260 |
| abstract_inverted_index.occur | 42 |
| abstract_inverted_index.signs | 25 |
| abstract_inverted_index.study | 297 |
| abstract_inverted_index.until | 49 |
| abstract_inverted_index.which | 210, 223 |
| abstract_inverted_index.years | 177 |
| abstract_inverted_index.(DMN). | 256 |
| abstract_inverted_index.(MRI), | 116 |
| abstract_inverted_index.Center | 193 |
| abstract_inverted_index.actual | 69 |
| abstract_inverted_index.ageing | 135 |
| abstract_inverted_index.aging. | 247 |
| abstract_inverted_index.almost | 274 |
| abstract_inverted_index.asking | 222 |
| abstract_inverted_index.bodily | 27 |
| abstract_inverted_index.brain. | 21 |
| abstract_inverted_index.brains | 45 |
| abstract_inverted_index.cannot | 102 |
| abstract_inverted_index.cohort | 169 |
| abstract_inverted_index.damage | 93 |
| abstract_inverted_index.employ | 143 |
| abstract_inverted_index.error, | 240 |
| abstract_inverted_index.health | 62 |
| abstract_inverted_index.impair | 51 |
| abstract_inverted_index.lowest | 263 |
| abstract_inverted_index.models | 268 |
| abstract_inverted_index.muscle | 36 |
| abstract_inverted_index.needed | 228 |
| abstract_inverted_index.normal | 203, 258 |
| abstract_inverted_index.offers | 98 |
| abstract_inverted_index.remain | 46 |
| abstract_inverted_index.rsfMRI | 162 |
| abstract_inverted_index.severe | 91 |
| abstract_inverted_index.should | 324 |
| abstract_inverted_index.status | 63 |
| abstract_inverted_index.study, | 141 |
| abstract_inverted_index.within | 43 |
| abstract_inverted_index.years. | 220 |
| abstract_inverted_index.(LASSO) | 151 |
| abstract_inverted_index.Default | 253 |
| abstract_inverted_index.Imaging | 192 |
| abstract_inverted_index.Network | 255 |
| abstract_inverted_index.ability | 300 |
| abstract_inverted_index.address | 125 |
| abstract_inverted_index.ageing, | 28 |
| abstract_inverted_index.changes | 40 |
| abstract_inverted_index.derived | 159 |
| abstract_inverted_index.deviate | 66 |
| abstract_inverted_index.female, | 181 |
| abstract_inverted_index.greying | 30 |
| abstract_inverted_index.healthy | 172 |
| abstract_inverted_index.imaging | 115 |
| abstract_inverted_index.outlier | 137 |
| abstract_inverted_index.plastic | 85 |
| abstract_inverted_index.predict | 230, 302 |
| abstract_inverted_index.process | 18 |
| abstract_inverted_index.relying | 110 |
| abstract_inverted_index.smaller | 239 |
| abstract_inverted_index.studied | 326 |
| abstract_inverted_index.studies | 109 |
| abstract_inverted_index.through | 136 |
| abstract_inverted_index.utilize | 118 |
| abstract_inverted_index.visible | 24 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.Absolute | 146 |
| abstract_inverted_index.Contrary | 22, 104 |
| abstract_inverted_index.National | 196 |
| abstract_inverted_index.Notably, | 72 |
| abstract_inverted_index.Operator | 150 |
| abstract_inverted_index.Research | 191 |
| abstract_inverted_index.abnormal | 133, 246, 285 |
| abstract_inverted_index.absolute | 215 |
| abstract_inverted_index.achieves | 211 |
| abstract_inverted_index.advances | 298 |
| abstract_inverted_index.apparent | 48 |
| abstract_inverted_index.decline. | 295 |
| abstract_inverted_index.distinct | 55 |
| abstract_inverted_index.features | 225 |
| abstract_inverted_index.further. | 327 |
| abstract_inverted_index.identify | 153, 242 |
| abstract_inverted_index.insights | 99, 307 |
| abstract_inverted_index.internal | 39 |
| abstract_inverted_index.lifespan | 3 |
| abstract_inverted_index.magnetic | 113 |
| abstract_inverted_index.outliers | 236 |
| abstract_inverted_index.provide. | 103 |
| abstract_inverted_index.provides | 306 |
| abstract_inverted_index.reflects | 59 |
| abstract_inverted_index.removal. | 138 |
| abstract_inverted_index.subjects | 131, 272 |
| abstract_inverted_index.(rsfMRI). | 122 |
| abstract_inverted_index.Selection | 149 |
| abstract_inverted_index.Shrinkage | 147 |
| abstract_inverted_index.assessing | 312 |
| abstract_inverted_index.brain’s | 61 |
| abstract_inverted_index.candidate | 281 |
| abstract_inverted_index.cognitive | 9, 294 |
| abstract_inverted_index.collected | 187 |
| abstract_inverted_index.establish | 201 |
| abstract_inverted_index.evaluated | 269 |
| abstract_inverted_index.excluding | 207 |
| abstract_inverted_index.function. | 52 |
| abstract_inverted_index.highlight | 11 |
| abstract_inverted_index.inclusion | 129 |
| abstract_inverted_index.mortality | 79 |
| abstract_inverted_index.multitude | 107 |
| abstract_inverted_index.outliers, | 209 |
| abstract_inverted_index.potential | 309 |
| abstract_inverted_index.published | 267 |
| abstract_inverted_index.reference | 204, 259 |
| abstract_inverted_index.resonance | 114 |
| abstract_inverted_index.rewiring. | 95 |
| abstract_inverted_index.screening | 283 |
| abstract_inverted_index.Functional | 96 |
| abstract_inverted_index.additional | 224 |
| abstract_inverted_index.associated | 77, 250 |
| abstract_inverted_index.biomarkers | 310 |
| abstract_inverted_index.capability | 10 |
| abstract_inverted_index.compensate | 88 |
| abstract_inverted_index.functional | 120 |
| abstract_inverted_index.importance | 13 |
| abstract_inverted_index.increasing | 2 |
| abstract_inverted_index.individual | 6 |
| abstract_inverted_index.manifested | 292 |
| abstract_inverted_index.prediction | 264 |
| abstract_inverted_index.predictive | 157, 244 |
| abstract_inverted_index.structural | 92, 101, 112 |
| abstract_inverted_index.suggesting | 315 |
| abstract_inverted_index.University. | 199 |
| abstract_inverted_index.depression. | 81 |
| abstract_inverted_index.differences | 7 |
| abstract_inverted_index.volunteers, | 174 |
| abstract_inverted_index.correlations | 158, 243 |
| abstract_inverted_index.right-handed | 173 |
| abstract_inverted_index.chronological | 57, 70, 232 |
| abstract_inverted_index.comprehending | 15 |
| abstract_inverted_index.leave-one-out | 213 |
| abstract_inverted_index.resting-state | 119 |
| abstract_inverted_index.characterization | 97 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5039574191 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I91807558 |
| citation_normalized_percentile.value | 0.24900174 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |