AgMIP's Global Gridded Crop Model Intercomparison (GGCMI) phase 1 output data set: EPIC-TAMU maize Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.1409013
This is model output from EPIC-TAMU for maize as part of AgMIP's Global Gridded Crop Model Intercomparison (GGCMI) phase 1 output data set.\n\n\nThe data have been generated following the modeling protocol of Elliott et al. (2015) and has been used to evaluate the models (Müller et al., 2017). A data description paper has been published in Scientific Data (Müller et al. 2019).\n\n\nReferences:\n\n\nElliott J, Müller C, Deryng D, Chryssanthacopoulos J, Boote KJ, Büchner M, Foster I, Glotter M, Heinke J, Iizumi T, Izaurralde RC, Mueller ND, Ray DK, Rosenzweig C, Ruane AC, and Sheffield J. 2015, The Global Gridded Crop Model intercomparison: data and modeling protocols for Phase 1 (v1.0). Geosci. Model Dev. 8, 261-277, doi:10.5194/gmd-8-261-2015\n\n\nMüller C, Elliott J, Chryssanthacopoulos J, Arneth A, Balkovic J, Ciais P, Deryng D, Folberth C, Glotter M, Hoek S, Iizumi T, Izaurralde RC, Jones C, Khabarov N, Lawrence P, Liu W, Olin S, Pugh TAM, Ray DK, Reddy A, Rosenzweig C, Ruane AC, Sakurai G, Schmid E, Skalsky R, Song CX, Wang X, de Wit A, and Yang H. 2017, Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications, Geosci. Model Dev., 10, 1403-1422, doi: 10.5194/gmd-10-1403-2017\n\n\nMüller C, Elliott J, Kelly D, Arneth A, Balkovic J, Ciais P, Deryng D, Folberth C, Hoek S, Izaurralde RC, Jones CD, Khabarov N, Lawrence P, Liu W, Olin S, Pugh TAM, Reddy A, Rosenzweig C, Ruane AC, Sakurai G, Schmid E, Skalsky R, Wang X, de Wit A, and Yang H. 2019, The Global Gridded Crop Model Intercomparison phase 1 simulation dataset, Scientific Data, 6, 50, doi: 10.1038/s41597-019-0023-8
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.5281/zenodo.1409013
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393740232
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393740232Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.1409013Digital Object Identifier
- Title
-
AgMIP's Global Gridded Crop Model Intercomparison (GGCMI) phase 1 output data set: EPIC-TAMU maizeWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-09-06Full publication date if available
- Authors
-
Ashwan Reddy, Curtis D. Jones, R. C. IzaurraldeList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.1409013Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.1409013Direct OA link when available
- Concepts
-
EPIC, Environmental science, Crop, Data set, Crop management, Coupled model intercomparison project, Meteorology, Mathematics, Geography, Forestry, General Circulation Model, Biology, Statistics, Climate change, Ecology, Literature, ArtTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2020: 1, 2019: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393740232 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.1409013 |
| ids.openalex | https://openalex.org/W4393740232 |
| fwci | 0.0 |
| type | dataset |
| title | AgMIP's Global Gridded Crop Model Intercomparison (GGCMI) phase 1 output data set: EPIC-TAMU maize |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12310 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.44020000100135803 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1102 |
| topics[0].subfield.display_name | Agronomy and Crop Science |
| topics[0].display_name | Crop Yield and Soil Fertility |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C115519274 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8533386588096619 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q267903 |
| concepts[0].display_name | EPIC |
| concepts[1].id | https://openalex.org/C39432304 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5063134431838989 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[1].display_name | Environmental science |
| concepts[2].id | https://openalex.org/C137580998 |
| concepts[2].level | 2 |
| concepts[2].score | 0.48639610409736633 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q235352 |
| concepts[2].display_name | Crop |
| concepts[3].id | https://openalex.org/C58489278 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4650704860687256 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1172284 |
| concepts[3].display_name | Data set |
| concepts[4].id | https://openalex.org/C2988270110 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4586373269557953 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17080711 |
| concepts[4].display_name | Crop management |
| concepts[5].id | https://openalex.org/C25022447 |
| concepts[5].level | 4 |
| concepts[5].score | 0.4536905884742737 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5178021 |
| concepts[5].display_name | Coupled model intercomparison project |
| concepts[6].id | https://openalex.org/C153294291 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3266140818595886 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[6].display_name | Meteorology |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.257707804441452 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C205649164 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2255200743675232 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[8].display_name | Geography |
| concepts[9].id | https://openalex.org/C97137747 |
| concepts[9].level | 1 |
| concepts[9].score | 0.19884377717971802 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q38112 |
| concepts[9].display_name | Forestry |
| concepts[10].id | https://openalex.org/C141452985 |
| concepts[10].level | 3 |
| concepts[10].score | 0.1768532395362854 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q650994 |
| concepts[10].display_name | General Circulation Model |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.08778718113899231 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.05734062194824219 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C132651083 |
| concepts[13].level | 2 |
| concepts[13].score | 0.05576103925704956 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7942 |
| concepts[13].display_name | Climate change |
| concepts[14].id | https://openalex.org/C18903297 |
| concepts[14].level | 1 |
| concepts[14].score | 0.042613834142684937 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[14].display_name | Ecology |
| concepts[15].id | https://openalex.org/C124952713 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8242 |
| concepts[15].display_name | Literature |
| concepts[16].id | https://openalex.org/C142362112 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[16].display_name | Art |
| keywords[0].id | https://openalex.org/keywords/epic |
| keywords[0].score | 0.8533386588096619 |
| keywords[0].display_name | EPIC |
| keywords[1].id | https://openalex.org/keywords/environmental-science |
| keywords[1].score | 0.5063134431838989 |
| keywords[1].display_name | Environmental science |
| keywords[2].id | https://openalex.org/keywords/crop |
| keywords[2].score | 0.48639610409736633 |
| keywords[2].display_name | Crop |
| keywords[3].id | https://openalex.org/keywords/data-set |
| keywords[3].score | 0.4650704860687256 |
| keywords[3].display_name | Data set |
| keywords[4].id | https://openalex.org/keywords/crop-management |
| keywords[4].score | 0.4586373269557953 |
| keywords[4].display_name | Crop management |
| keywords[5].id | https://openalex.org/keywords/coupled-model-intercomparison-project |
| keywords[5].score | 0.4536905884742737 |
| keywords[5].display_name | Coupled model intercomparison project |
| keywords[6].id | https://openalex.org/keywords/meteorology |
| keywords[6].score | 0.3266140818595886 |
| keywords[6].display_name | Meteorology |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.257707804441452 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/geography |
| keywords[8].score | 0.2255200743675232 |
| keywords[8].display_name | Geography |
| keywords[9].id | https://openalex.org/keywords/forestry |
| keywords[9].score | 0.19884377717971802 |
| keywords[9].display_name | Forestry |
| keywords[10].id | https://openalex.org/keywords/general-circulation-model |
| keywords[10].score | 0.1768532395362854 |
| keywords[10].display_name | General Circulation Model |
| keywords[11].id | https://openalex.org/keywords/biology |
| keywords[11].score | 0.08778718113899231 |
| keywords[11].display_name | Biology |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.05734062194824219 |
| keywords[12].display_name | Statistics |
| keywords[13].id | https://openalex.org/keywords/climate-change |
| keywords[13].score | 0.05576103925704956 |
| keywords[13].display_name | Climate change |
| keywords[14].id | https://openalex.org/keywords/ecology |
| keywords[14].score | 0.042613834142684937 |
| keywords[14].display_name | Ecology |
| language | en |
| locations[0].id | pmh:oai:zenodo.org:1409013 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | other-oa |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | info:eu-repo/semantics/other |
| locations[0].license_id | https://openalex.org/licenses/other-oa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.1409013 |
| authorships[0].author.id | https://openalex.org/A5112451222 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ashwan Reddy |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I66946132 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Maryland, Department of Geographical Sciences |
| authorships[0].institutions[0].id | https://openalex.org/I66946132 |
| authorships[0].institutions[0].ror | https://ror.org/047s2c258 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I66946132 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Maryland, College Park |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ashwan Reddy |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Maryland, Department of Geographical Sciences |
| authorships[1].author.id | https://openalex.org/A5026138663 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4008-5964 |
| authorships[1].author.display_name | Curtis D. Jones |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I66946132 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Maryland, Department of Geographical Sciences |
| authorships[1].institutions[0].id | https://openalex.org/I66946132 |
| authorships[1].institutions[0].ror | https://ror.org/047s2c258 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I66946132 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Maryland, College Park |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Curtis D. Jones |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Maryland, Department of Geographical Sciences |
| authorships[2].author.id | https://openalex.org/A5015635783 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8797-9500 |
| authorships[2].author.display_name | R. C. Izaurralde |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I66946132 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Maryland, Department of Geographical Sciences |
| authorships[2].institutions[0].id | https://openalex.org/I66946132 |
| authorships[2].institutions[0].ror | https://ror.org/047s2c258 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I66946132 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Maryland, College Park |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Roberto C. Izaurralde |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Maryland, Department of Geographical Sciences |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.1409013 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | AgMIP's Global Gridded Crop Model Intercomparison (GGCMI) phase 1 output data set: EPIC-TAMU maize |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12310 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.44020000100135803 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1102 |
| primary_topic.subfield.display_name | Agronomy and Crop Science |
| primary_topic.display_name | Crop Yield and Soil Fertility |
| related_works | https://openalex.org/W2151979312, https://openalex.org/W1480231236, https://openalex.org/W2169393985, https://openalex.org/W2606632758, https://openalex.org/W3094193311, https://openalex.org/W4200333915, https://openalex.org/W2268993980, https://openalex.org/W2104224106, https://openalex.org/W4254679070, https://openalex.org/W2122737262 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2020 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2019 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:zenodo.org:1409013 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/other |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.1409013 |
| primary_location.id | pmh:oai:zenodo.org:1409013 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | other-oa |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | info:eu-repo/semantics/other |
| primary_location.license_id | https://openalex.org/licenses/other-oa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.1409013 |
| publication_date | 2018-09-06 |
| publication_year | 2018 |
| referenced_works_count | 0 |
| abstract_inverted_index.1 | 19, 107, 250 |
| abstract_inverted_index.A | 48 |
| abstract_inverted_index.6, | 255 |
| abstract_inverted_index.A, | 120, 152, 169, 197, 223, 238 |
| abstract_inverted_index.C, | 64, 88, 114, 128, 138, 154, 191, 205, 225 |
| abstract_inverted_index.D, | 66, 126, 195, 203 |
| abstract_inverted_index.E, | 160, 231 |
| abstract_inverted_index.G, | 158, 229 |
| abstract_inverted_index.H. | 172, 241 |
| abstract_inverted_index.I, | 74 |
| abstract_inverted_index.J, | 62, 68, 78, 116, 118, 122, 193, 199 |
| abstract_inverted_index.J. | 93 |
| abstract_inverted_index.M, | 72, 76, 130 |
| abstract_inverted_index.N, | 140, 213 |
| abstract_inverted_index.P, | 124, 142, 201, 215 |
| abstract_inverted_index.R, | 162, 233 |
| abstract_inverted_index.S, | 132, 146, 207, 219 |
| abstract_inverted_index.T, | 80, 134 |
| abstract_inverted_index.W, | 144, 217 |
| abstract_inverted_index.X, | 166, 235 |
| abstract_inverted_index.as | 8 |
| abstract_inverted_index.de | 167, 236 |
| abstract_inverted_index.et | 33, 45, 59 |
| abstract_inverted_index.in | 55 |
| abstract_inverted_index.is | 1 |
| abstract_inverted_index.of | 10, 31 |
| abstract_inverted_index.to | 40 |
| abstract_inverted_index.10, | 187 |
| abstract_inverted_index.50, | 256 |
| abstract_inverted_index.AC, | 90, 156, 227 |
| abstract_inverted_index.CD, | 211 |
| abstract_inverted_index.CX, | 164 |
| abstract_inverted_index.DK, | 86, 150 |
| abstract_inverted_index.KJ, | 70 |
| abstract_inverted_index.Liu | 143, 216 |
| abstract_inverted_index.ND, | 84 |
| abstract_inverted_index.RC, | 82, 136, 209 |
| abstract_inverted_index.Ray | 85, 149 |
| abstract_inverted_index.The | 95, 243 |
| abstract_inverted_index.Wit | 168, 237 |
| abstract_inverted_index.al. | 34, 60 |
| abstract_inverted_index.and | 36, 91, 102, 170, 182, 239 |
| abstract_inverted_index.for | 6, 105 |
| abstract_inverted_index.has | 37, 52 |
| abstract_inverted_index.the | 28, 42 |
| abstract_inverted_index.Crop | 14, 98, 246 |
| abstract_inverted_index.Data | 57 |
| abstract_inverted_index.Hoek | 131, 206 |
| abstract_inverted_index.Olin | 145, 218 |
| abstract_inverted_index.Pugh | 147, 220 |
| abstract_inverted_index.Song | 163 |
| abstract_inverted_index.TAM, | 148, 221 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.Wang | 165, 234 |
| abstract_inverted_index.Yang | 171, 240 |
| abstract_inverted_index.al., | 46 |
| abstract_inverted_index.been | 25, 38, 53 |
| abstract_inverted_index.crop | 176 |
| abstract_inverted_index.data | 21, 23, 49, 101 |
| abstract_inverted_index.doi: | 189, 257 |
| abstract_inverted_index.from | 4 |
| abstract_inverted_index.have | 24 |
| abstract_inverted_index.part | 9 |
| abstract_inverted_index.used | 39 |
| abstract_inverted_index.2015, | 94 |
| abstract_inverted_index.2017, | 173 |
| abstract_inverted_index.2019, | 242 |
| abstract_inverted_index.Boote | 69 |
| abstract_inverted_index.Ciais | 123, 200 |
| abstract_inverted_index.Data, | 254 |
| abstract_inverted_index.Dev., | 186 |
| abstract_inverted_index.Jones | 137, 210 |
| abstract_inverted_index.Kelly | 194 |
| abstract_inverted_index.Model | 15, 99, 110, 185, 247 |
| abstract_inverted_index.Phase | 106 |
| abstract_inverted_index.Reddy | 151, 222 |
| abstract_inverted_index.Ruane | 89, 155, 226 |
| abstract_inverted_index.maize | 7 |
| abstract_inverted_index.model | 2, 177 |
| abstract_inverted_index.paper | 51 |
| abstract_inverted_index.phase | 18, 249 |
| abstract_inverted_index.(2015) | 35 |
| abstract_inverted_index.2017). | 47 |
| abstract_inverted_index.Arneth | 119, 196 |
| abstract_inverted_index.Deryng | 65, 125, 202 |
| abstract_inverted_index.Foster | 73 |
| abstract_inverted_index.Global | 12, 96, 174, 244 |
| abstract_inverted_index.Heinke | 77 |
| abstract_inverted_index.Iizumi | 79, 133 |
| abstract_inverted_index.Schmid | 159, 230 |
| abstract_inverted_index.models | 43 |
| abstract_inverted_index.output | 3, 20 |
| abstract_inverted_index.(GGCMI) | 17 |
| abstract_inverted_index.(v1.0). | 108 |
| abstract_inverted_index.Elliott | 32, 115, 192 |
| abstract_inverted_index.Geosci. | 109, 184 |
| abstract_inverted_index.Glotter | 75, 129 |
| abstract_inverted_index.Gridded | 13, 97, 245 |
| abstract_inverted_index.Mueller | 83 |
| abstract_inverted_index.Sakurai | 157, 228 |
| abstract_inverted_index.Skalsky | 161, 232 |
| abstract_inverted_index.gridded | 175 |
| abstract_inverted_index.skills, | 180 |
| abstract_inverted_index.261-277, | 112 |
| abstract_inverted_index.Balkovic | 121, 198 |
| abstract_inverted_index.Folberth | 127, 204 |
| abstract_inverted_index.Khabarov | 139, 212 |
| abstract_inverted_index.Lawrence | 141, 214 |
| abstract_inverted_index.dataset, | 252 |
| abstract_inverted_index.evaluate | 41 |
| abstract_inverted_index.modeling | 29, 103 |
| abstract_inverted_index.protocol | 30 |
| abstract_inverted_index.EPIC-TAMU | 5 |
| abstract_inverted_index.Sheffield | 92 |
| abstract_inverted_index.following | 27 |
| abstract_inverted_index.generated | 26 |
| abstract_inverted_index.protocols | 104 |
| abstract_inverted_index.published | 54 |
| abstract_inverted_index.1403-1422, | 188 |
| abstract_inverted_index.Izaurralde | 81, 135, 208 |
| abstract_inverted_index.Rosenzweig | 87, 153, 224 |
| abstract_inverted_index.Scientific | 56, 253 |
| abstract_inverted_index.simulation | 251 |
| abstract_inverted_index.description | 50 |
| abstract_inverted_index.evaluation: | 178 |
| abstract_inverted_index.deficiencies | 181 |
| abstract_inverted_index.benchmarking, | 179 |
| abstract_inverted_index.implications, | 183 |
| abstract_inverted_index.set.\n\n\nThe | 22 |
| abstract_inverted_index.AgMIP's | 11 |
| abstract_inverted_index.Intercomparison | 16, 248 |
| abstract_inverted_index.Müller | 63 |
| abstract_inverted_index.(Müller | 44, 58 |
| abstract_inverted_index.Büchner | 71 |
| abstract_inverted_index.Dev. 8, | 111 |
| abstract_inverted_index.intercomparison: | 100 |
| abstract_inverted_index.Chryssanthacopoulos | 67, 117 |
| abstract_inverted_index.10.1038/s41597-019-0023-8 | 258 |
| abstract_inverted_index.2019).\n\n\nReferences:\n\n\nElliott | 61 |
| abstract_inverted_index.10.5194/gmd-10-1403-2017\n\n\nMüller | 190 |
| abstract_inverted_index.doi:10.5194/gmd-8-261-2015\n\n\nMüller | 113 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |