AI-Based Breast Cancer Detection System Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.20944/preprints202502.1981.v1
This work addresses the critical need for early detection of breast cancer, a significant health concern worldwide. Through a combination of advanced deep learning and machine learning techniques, we offer a comprehensive solution to enhance breast cancer detection accuracy. By leveraging state-of-the-art convolutional neural networks (CNNs) like GoogLeNet, AlexNet, and ResNet18, alongside traditional classifiers such as k-nearest neighbors (KNN) and support vector machine (SVM), we ensure robust prediction capabilities. Our preprocessing methods significantly improve input data quality, leading to promising detection accuracies. For instance, ResNet-18 achieved impressive results, outperforming other models. Furthermore, our integration of these algorithms into a user-friendly MATLAB application ensures easy access for medical professionals, facilitating timely diagnosis and treatment. This work represents a vital step towards more effective breast cancer diagnosis, underscoring the importance of early intervention for improved patient outcomes.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.20944/preprints202502.1981.v1
- https://www.preprints.org/frontend/manuscript/7678bab44bfd66621bb06fbdf3db2823/download_pub
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408007510
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408007510Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.20944/preprints202502.1981.v1Digital Object Identifier
- Title
-
AI-Based Breast Cancer Detection SystemWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-25Full publication date if available
- Authors
-
Amro Moursi, Abdulrahman Abumadi, Uvais QidwaiList of authors in order
- Landing page
-
https://doi.org/10.20944/preprints202502.1981.v1Publisher landing page
- PDF URL
-
https://www.preprints.org/frontend/manuscript/7678bab44bfd66621bb06fbdf3db2823/download_pubDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.preprints.org/frontend/manuscript/7678bab44bfd66621bb06fbdf3db2823/download_pubDirect OA link when available
- Concepts
-
Breast cancer, Cancer detection, Computer science, Cancer, Artificial intelligence, Medicine, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408007510 |
|---|---|
| doi | https://doi.org/10.20944/preprints202502.1981.v1 |
| ids.doi | https://doi.org/10.20944/preprints202502.1981.v1 |
| ids.openalex | https://openalex.org/W4408007510 |
| fwci | 0.0 |
| type | preprint |
| title | AI-Based Breast Cancer Detection System |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9610000252723694 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C530470458 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7144961357116699 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q128581 |
| concepts[0].display_name | Breast cancer |
| concepts[1].id | https://openalex.org/C2985322473 |
| concepts[1].level | 3 |
| concepts[1].score | 0.48248791694641113 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3044843 |
| concepts[1].display_name | Cancer detection |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4239721894264221 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C121608353 |
| concepts[3].level | 2 |
| concepts[3].score | 0.33454591035842896 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[3].display_name | Cancer |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.320473313331604 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C71924100 |
| concepts[5].level | 0 |
| concepts[5].score | 0.2927015423774719 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[5].display_name | Medicine |
| concepts[6].id | https://openalex.org/C126322002 |
| concepts[6].level | 1 |
| concepts[6].score | 0.19457697868347168 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[6].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/breast-cancer |
| keywords[0].score | 0.7144961357116699 |
| keywords[0].display_name | Breast cancer |
| keywords[1].id | https://openalex.org/keywords/cancer-detection |
| keywords[1].score | 0.48248791694641113 |
| keywords[1].display_name | Cancer detection |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4239721894264221 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/cancer |
| keywords[3].score | 0.33454591035842896 |
| keywords[3].display_name | Cancer |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.320473313331604 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/medicine |
| keywords[5].score | 0.2927015423774719 |
| keywords[5].display_name | Medicine |
| keywords[6].id | https://openalex.org/keywords/internal-medicine |
| keywords[6].score | 0.19457697868347168 |
| keywords[6].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.20944/preprints202502.1981.v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S6309402219 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Preprints.org |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.preprints.org/frontend/manuscript/7678bab44bfd66621bb06fbdf3db2823/download_pub |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.20944/preprints202502.1981.v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5116443778 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Amro Moursi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Amro Sayed Mahmoud Moursi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5116443779 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Abdulrahman Abumadi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Abdulrahman Abumadi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5039299960 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9924-590X |
| authorships[2].author.display_name | Uvais Qidwai |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Uvais Qidwai |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.preprints.org/frontend/manuscript/7678bab44bfd66621bb06fbdf3db2823/download_pub |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | AI-Based Breast Cancer Detection System |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9610000252723694 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4391375266, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2400060196, https://openalex.org/W2419646825 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.20944/preprints202502.1981.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S6309402219 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Preprints.org |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.preprints.org/frontend/manuscript/7678bab44bfd66621bb06fbdf3db2823/download_pub |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.20944/preprints202502.1981.v1 |
| primary_location.id | doi:10.20944/preprints202502.1981.v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S6309402219 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Preprints.org |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.preprints.org/frontend/manuscript/7678bab44bfd66621bb06fbdf3db2823/download_pub |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.20944/preprints202502.1981.v1 |
| publication_date | 2025-02-25 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 12, 18, 30, 98, 116 |
| abstract_inverted_index.By | 39 |
| abstract_inverted_index.as | 55 |
| abstract_inverted_index.of | 9, 20, 94, 128 |
| abstract_inverted_index.to | 33, 78 |
| abstract_inverted_index.we | 28, 64 |
| abstract_inverted_index.For | 82 |
| abstract_inverted_index.Our | 69 |
| abstract_inverted_index.and | 24, 49, 59, 111 |
| abstract_inverted_index.for | 6, 105, 131 |
| abstract_inverted_index.our | 92 |
| abstract_inverted_index.the | 3, 126 |
| abstract_inverted_index.This | 0, 113 |
| abstract_inverted_index.data | 75 |
| abstract_inverted_index.deep | 22 |
| abstract_inverted_index.easy | 103 |
| abstract_inverted_index.into | 97 |
| abstract_inverted_index.like | 46 |
| abstract_inverted_index.more | 120 |
| abstract_inverted_index.need | 5 |
| abstract_inverted_index.step | 118 |
| abstract_inverted_index.such | 54 |
| abstract_inverted_index.work | 1, 114 |
| abstract_inverted_index.(KNN) | 58 |
| abstract_inverted_index.early | 7, 129 |
| abstract_inverted_index.input | 74 |
| abstract_inverted_index.offer | 29 |
| abstract_inverted_index.other | 89 |
| abstract_inverted_index.these | 95 |
| abstract_inverted_index.vital | 117 |
| abstract_inverted_index.(CNNs) | 45 |
| abstract_inverted_index.(SVM), | 63 |
| abstract_inverted_index.MATLAB | 100 |
| abstract_inverted_index.access | 104 |
| abstract_inverted_index.breast | 10, 35, 122 |
| abstract_inverted_index.cancer | 36, 123 |
| abstract_inverted_index.ensure | 65 |
| abstract_inverted_index.health | 14 |
| abstract_inverted_index.neural | 43 |
| abstract_inverted_index.robust | 66 |
| abstract_inverted_index.timely | 109 |
| abstract_inverted_index.vector | 61 |
| abstract_inverted_index.Through | 17 |
| abstract_inverted_index.cancer, | 11 |
| abstract_inverted_index.concern | 15 |
| abstract_inverted_index.enhance | 34 |
| abstract_inverted_index.ensures | 102 |
| abstract_inverted_index.improve | 73 |
| abstract_inverted_index.leading | 77 |
| abstract_inverted_index.machine | 25, 62 |
| abstract_inverted_index.medical | 106 |
| abstract_inverted_index.methods | 71 |
| abstract_inverted_index.models. | 90 |
| abstract_inverted_index.patient | 133 |
| abstract_inverted_index.support | 60 |
| abstract_inverted_index.towards | 119 |
| abstract_inverted_index.AlexNet, | 48 |
| abstract_inverted_index.achieved | 85 |
| abstract_inverted_index.advanced | 21 |
| abstract_inverted_index.critical | 4 |
| abstract_inverted_index.improved | 132 |
| abstract_inverted_index.learning | 23, 26 |
| abstract_inverted_index.networks | 44 |
| abstract_inverted_index.quality, | 76 |
| abstract_inverted_index.results, | 87 |
| abstract_inverted_index.solution | 32 |
| abstract_inverted_index.ResNet-18 | 84 |
| abstract_inverted_index.ResNet18, | 50 |
| abstract_inverted_index.accuracy. | 38 |
| abstract_inverted_index.addresses | 2 |
| abstract_inverted_index.alongside | 51 |
| abstract_inverted_index.detection | 8, 37, 80 |
| abstract_inverted_index.diagnosis | 110 |
| abstract_inverted_index.effective | 121 |
| abstract_inverted_index.instance, | 83 |
| abstract_inverted_index.k-nearest | 56 |
| abstract_inverted_index.neighbors | 57 |
| abstract_inverted_index.outcomes. | 134 |
| abstract_inverted_index.promising | 79 |
| abstract_inverted_index.GoogLeNet, | 47 |
| abstract_inverted_index.algorithms | 96 |
| abstract_inverted_index.diagnosis, | 124 |
| abstract_inverted_index.importance | 127 |
| abstract_inverted_index.impressive | 86 |
| abstract_inverted_index.leveraging | 40 |
| abstract_inverted_index.prediction | 67 |
| abstract_inverted_index.represents | 115 |
| abstract_inverted_index.treatment. | 112 |
| abstract_inverted_index.worldwide. | 16 |
| abstract_inverted_index.accuracies. | 81 |
| abstract_inverted_index.application | 101 |
| abstract_inverted_index.classifiers | 53 |
| abstract_inverted_index.combination | 19 |
| abstract_inverted_index.integration | 93 |
| abstract_inverted_index.significant | 13 |
| abstract_inverted_index.techniques, | 27 |
| abstract_inverted_index.traditional | 52 |
| abstract_inverted_index.Furthermore, | 91 |
| abstract_inverted_index.facilitating | 108 |
| abstract_inverted_index.intervention | 130 |
| abstract_inverted_index.underscoring | 125 |
| abstract_inverted_index.capabilities. | 68 |
| abstract_inverted_index.comprehensive | 31 |
| abstract_inverted_index.convolutional | 42 |
| abstract_inverted_index.outperforming | 88 |
| abstract_inverted_index.preprocessing | 70 |
| abstract_inverted_index.significantly | 72 |
| abstract_inverted_index.user-friendly | 99 |
| abstract_inverted_index.professionals, | 107 |
| abstract_inverted_index.state-of-the-art | 41 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.02312496 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |