AI-based Environment-Aware XL-MIMO Channel Estimation with Location-Specific Prior Knowledge Enabled by CKM Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2507.06066
Accurate and efficient acquisition of wireless channel state information (CSI) is crucial to enhance the communication performance of wireless systems. However, with the continuous densification of wireless links, increased channel dimensions, and the use of higher-frequency bands, channel estimation in the sixth generation (6G) and beyond wireless networks faces new challenges, such as insufficient orthogonal pilot sequences, inadequate signal-to-noise ratio (SNR) for channel training, and more sophisticated channel statistical distributions in complex environment. These challenges pose significant difficulties for classical channel estimation algorithms like least squares (LS) and maximum a posteriori (MAP). To address this problem, we propose a novel environment-aware channel estimation framework with location-specific prior channel distribution enabled by the new concept of channel knowledge map (CKM). To this end, we propose a new type of CKM called channel score function map (CSFM), which learns the channel probability density function (PDF) using artificial intelligence (AI) techniques. To fully exploit the prior information in CSFM, we propose a plug-and-play (PnP) based algorithm to decouple the regularized MAP channel estimation problem, thereby reducing the complexity of the optimization process. Besides, we employ Tweedie's formula to establish a connection between the channel score function, defined as the logarithmic gradient of the channel PDF, and the channel denoiser. This allows the use of the high-precision, environment-aware channel denoiser from the CSFM to approximate the channel score function, thus enabling efficient processing of the decoupled channel statistical components. Simulation results show that the proposed CSFM-PnP based channel estimation technique significantly outperforms the conventional techniques in the aforementioned challenging scenarios.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2507.06066
- https://arxiv.org/pdf/2507.06066
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415972396
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415972396Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2507.06066Digital Object Identifier
- Title
-
AI-based Environment-Aware XL-MIMO Channel Estimation with Location-Specific Prior Knowledge Enabled by CKMWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-08Full publication date if available
- Authors
-
Yuelong Qiu, Di Wu, Yong Zeng, Yanqun Tang, Nan Cheng, Chenhao QiList of authors in order
- Landing page
-
https://arxiv.org/abs/2507.06066Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2507.06066Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2507.06066Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415972396 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2507.06066 |
| ids.doi | https://doi.org/10.48550/arxiv.2507.06066 |
| ids.openalex | https://openalex.org/W4415972396 |
| fwci | 0.0 |
| type | preprint |
| title | AI-based Environment-Aware XL-MIMO Channel Estimation with Location-Specific Prior Knowledge Enabled by CKM |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2507.06066 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2507.06066 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2507.06066 |
| locations[1].id | doi:10.48550/arxiv.2507.06066 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2507.06066 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101567510 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-0267-0511 |
| authorships[0].author.display_name | Yuelong Qiu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qiu, Yuelong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102734416 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7104-5896 |
| authorships[1].author.display_name | Di Wu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wu, Di |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5044773605 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3347-9690 |
| authorships[2].author.display_name | Yong Zeng |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zeng, Yong |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5001679117 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2803-1186 |
| authorships[3].author.display_name | Yanqun Tang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tang, Yanqun |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5050651525 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7907-2071 |
| authorships[4].author.display_name | Nan Cheng |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Cheng, Nan |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5001552076 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7360-939X |
| authorships[5].author.display_name | Chenhao Qi |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Qi, Chenhao |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2507.06066 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | AI-based Environment-Aware XL-MIMO Channel Estimation with Location-Specific Prior Knowledge Enabled by CKM |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-07T23:20:04.922697 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2507.06066 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2507.06066 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2507.06066 |
| primary_location.id | pmh:oai:arXiv.org:2507.06066 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2507.06066 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2507.06066 |
| publication_date | 2025-07-08 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 89, 98, 124, 158, 186 |
| abstract_inverted_index.To | 92, 119, 148 |
| abstract_inverted_index.as | 52, 194 |
| abstract_inverted_index.by | 110 |
| abstract_inverted_index.in | 39, 70, 154, 251 |
| abstract_inverted_index.is | 10 |
| abstract_inverted_index.of | 4, 17, 25, 34, 114, 127, 175, 198, 210, 229 |
| abstract_inverted_index.to | 12, 163, 184, 219 |
| abstract_inverted_index.we | 96, 122, 156, 180 |
| abstract_inverted_index.CKM | 128 |
| abstract_inverted_index.MAP | 167 |
| abstract_inverted_index.and | 1, 31, 44, 64, 87, 202 |
| abstract_inverted_index.for | 61, 78 |
| abstract_inverted_index.map | 117, 133 |
| abstract_inverted_index.new | 49, 112, 125 |
| abstract_inverted_index.the | 14, 22, 32, 40, 111, 137, 151, 165, 173, 176, 189, 195, 199, 203, 208, 211, 217, 221, 230, 239, 248, 252 |
| abstract_inverted_index.use | 33, 209 |
| abstract_inverted_index.(6G) | 43 |
| abstract_inverted_index.(AI) | 146 |
| abstract_inverted_index.(LS) | 86 |
| abstract_inverted_index.CSFM | 218 |
| abstract_inverted_index.PDF, | 201 |
| abstract_inverted_index.This | 206 |
| abstract_inverted_index.end, | 121 |
| abstract_inverted_index.from | 216 |
| abstract_inverted_index.like | 83 |
| abstract_inverted_index.more | 65 |
| abstract_inverted_index.pose | 75 |
| abstract_inverted_index.show | 237 |
| abstract_inverted_index.such | 51 |
| abstract_inverted_index.that | 238 |
| abstract_inverted_index.this | 94, 120 |
| abstract_inverted_index.thus | 225 |
| abstract_inverted_index.type | 126 |
| abstract_inverted_index.with | 21, 104 |
| abstract_inverted_index.(CSI) | 9 |
| abstract_inverted_index.(PDF) | 142 |
| abstract_inverted_index.(PnP) | 160 |
| abstract_inverted_index.(SNR) | 60 |
| abstract_inverted_index.CSFM, | 155 |
| abstract_inverted_index.These | 73 |
| abstract_inverted_index.based | 161, 242 |
| abstract_inverted_index.faces | 48 |
| abstract_inverted_index.fully | 149 |
| abstract_inverted_index.least | 84 |
| abstract_inverted_index.novel | 99 |
| abstract_inverted_index.pilot | 55 |
| abstract_inverted_index.prior | 106, 152 |
| abstract_inverted_index.ratio | 59 |
| abstract_inverted_index.score | 131, 191, 223 |
| abstract_inverted_index.sixth | 41 |
| abstract_inverted_index.state | 7 |
| abstract_inverted_index.using | 143 |
| abstract_inverted_index.which | 135 |
| abstract_inverted_index.(CKM). | 118 |
| abstract_inverted_index.(MAP). | 91 |
| abstract_inverted_index.allows | 207 |
| abstract_inverted_index.bands, | 36 |
| abstract_inverted_index.beyond | 45 |
| abstract_inverted_index.called | 129 |
| abstract_inverted_index.employ | 181 |
| abstract_inverted_index.learns | 136 |
| abstract_inverted_index.links, | 27 |
| abstract_inverted_index.(CSFM), | 134 |
| abstract_inverted_index.address | 93 |
| abstract_inverted_index.between | 188 |
| abstract_inverted_index.channel | 6, 29, 37, 62, 67, 80, 101, 107, 115, 130, 138, 168, 190, 200, 204, 214, 222, 232, 243 |
| abstract_inverted_index.complex | 71 |
| abstract_inverted_index.concept | 113 |
| abstract_inverted_index.crucial | 11 |
| abstract_inverted_index.defined | 193 |
| abstract_inverted_index.density | 140 |
| abstract_inverted_index.enabled | 109 |
| abstract_inverted_index.enhance | 13 |
| abstract_inverted_index.exploit | 150 |
| abstract_inverted_index.formula | 183 |
| abstract_inverted_index.maximum | 88 |
| abstract_inverted_index.propose | 97, 123, 157 |
| abstract_inverted_index.results | 236 |
| abstract_inverted_index.squares | 85 |
| abstract_inverted_index.thereby | 171 |
| abstract_inverted_index.Accurate | 0 |
| abstract_inverted_index.Besides, | 179 |
| abstract_inverted_index.CSFM-PnP | 241 |
| abstract_inverted_index.However, | 20 |
| abstract_inverted_index.decouple | 164 |
| abstract_inverted_index.denoiser | 215 |
| abstract_inverted_index.enabling | 226 |
| abstract_inverted_index.function | 132, 141 |
| abstract_inverted_index.gradient | 197 |
| abstract_inverted_index.networks | 47 |
| abstract_inverted_index.problem, | 95, 170 |
| abstract_inverted_index.process. | 178 |
| abstract_inverted_index.proposed | 240 |
| abstract_inverted_index.reducing | 172 |
| abstract_inverted_index.systems. | 19 |
| abstract_inverted_index.wireless | 5, 18, 26, 46 |
| abstract_inverted_index.Tweedie's | 182 |
| abstract_inverted_index.algorithm | 162 |
| abstract_inverted_index.classical | 79 |
| abstract_inverted_index.decoupled | 231 |
| abstract_inverted_index.denoiser. | 205 |
| abstract_inverted_index.efficient | 2, 227 |
| abstract_inverted_index.establish | 185 |
| abstract_inverted_index.framework | 103 |
| abstract_inverted_index.function, | 192, 224 |
| abstract_inverted_index.increased | 28 |
| abstract_inverted_index.knowledge | 116 |
| abstract_inverted_index.technique | 245 |
| abstract_inverted_index.training, | 63 |
| abstract_inverted_index.Simulation | 235 |
| abstract_inverted_index.algorithms | 82 |
| abstract_inverted_index.artificial | 144 |
| abstract_inverted_index.challenges | 74 |
| abstract_inverted_index.complexity | 174 |
| abstract_inverted_index.connection | 187 |
| abstract_inverted_index.continuous | 23 |
| abstract_inverted_index.estimation | 38, 81, 102, 169, 244 |
| abstract_inverted_index.generation | 42 |
| abstract_inverted_index.inadequate | 57 |
| abstract_inverted_index.orthogonal | 54 |
| abstract_inverted_index.posteriori | 90 |
| abstract_inverted_index.processing | 228 |
| abstract_inverted_index.scenarios. | 255 |
| abstract_inverted_index.sequences, | 56 |
| abstract_inverted_index.techniques | 250 |
| abstract_inverted_index.acquisition | 3 |
| abstract_inverted_index.approximate | 220 |
| abstract_inverted_index.challenges, | 50 |
| abstract_inverted_index.challenging | 254 |
| abstract_inverted_index.components. | 234 |
| abstract_inverted_index.dimensions, | 30 |
| abstract_inverted_index.information | 8, 153 |
| abstract_inverted_index.logarithmic | 196 |
| abstract_inverted_index.outperforms | 247 |
| abstract_inverted_index.performance | 16 |
| abstract_inverted_index.probability | 139 |
| abstract_inverted_index.regularized | 166 |
| abstract_inverted_index.significant | 76 |
| abstract_inverted_index.statistical | 68, 233 |
| abstract_inverted_index.techniques. | 147 |
| abstract_inverted_index.conventional | 249 |
| abstract_inverted_index.difficulties | 77 |
| abstract_inverted_index.distribution | 108 |
| abstract_inverted_index.environment. | 72 |
| abstract_inverted_index.insufficient | 53 |
| abstract_inverted_index.intelligence | 145 |
| abstract_inverted_index.optimization | 177 |
| abstract_inverted_index.communication | 15 |
| abstract_inverted_index.densification | 24 |
| abstract_inverted_index.distributions | 69 |
| abstract_inverted_index.plug-and-play | 159 |
| abstract_inverted_index.significantly | 246 |
| abstract_inverted_index.sophisticated | 66 |
| abstract_inverted_index.aforementioned | 253 |
| abstract_inverted_index.high-precision, | 212 |
| abstract_inverted_index.signal-to-noise | 58 |
| abstract_inverted_index.higher-frequency | 35 |
| abstract_inverted_index.environment-aware | 100, 213 |
| abstract_inverted_index.location-specific | 105 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |