AI-Based Public Policy Making: A New holistic, Integrated and “AI by Design” Approach Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1109/dcoss-iot58021.2023.00087
<p><strong>Abstract:</strong></p>\n<div>Public policy development is becoming more and more challenging for public administrations and the recent events (first of all the Covid-19 Outbreak) demonstrated how an evidence-based approach is crucial for managing critical situations with short responses, fast adaptation, and citizens' support. The ultimate vision of data-driven policy making entails the use of Artificial Intelligence (AI) as a means of increasing the efficiency of the policy development and management process (i.e. going beyond development to adaptation and optimization) and boosting a more responsive, adaptive, intelligent, and citizen-centric governance. The cross-industry standard process for data mining, known as CRISP-DM, is the most widely-used open standard process model that describes common approaches used by AI experts. The paper presents how the H2020 project AI4PublicPolicy leverages this model to promote a new holistic, integrated, and “AI by design” approach for public policy making, providing the Virtualized Policy Management Environment (VPME) and the blueprints for organizational transformation. Moreover, the paper presents a practical use and validation of this approach in a real-life public policy making case.</div>
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/dcoss-iot58021.2023.00087
- OA Status
- green
- Cited By
- 3
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387090036
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387090036Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/dcoss-iot58021.2023.00087Digital Object Identifier
- Title
-
AI-Based Public Policy Making: A New holistic, Integrated and “AI by Design” ApproachWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-01Full publication date if available
- Authors
-
Alessandro Amicone, Luca Marangoni, Alessandro Marceddu, Massimo MiccoliList of authors in order
- Landing page
-
https://doi.org/10.1109/dcoss-iot58021.2023.00087Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/DCOSS-IoT58021.2023.00087Direct OA link when available
- Concepts
-
Blueprint, Computer science, Process (computing), Adaptation (eye), Boosting (machine learning), Corporate governance, Process management, Knowledge management, Public policy, Management science, Artificial intelligence, Engineering, Political science, Management, Economics, Operating system, Optics, Physics, Mechanical engineering, LawTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387090036 |
|---|---|
| doi | https://doi.org/10.1109/dcoss-iot58021.2023.00087 |
| ids.doi | https://doi.org/10.1109/dcoss-iot58021.2023.00087 |
| ids.openalex | https://openalex.org/W4387090036 |
| fwci | 0.76632866 |
| type | article |
| title | AI-Based Public Policy Making: A New holistic, Integrated and “AI by Design” Approach |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 532 |
| biblio.first_page | 525 |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9879000186920166 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| topics[1].id | https://openalex.org/T10883 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9679999947547913 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3311 |
| topics[1].subfield.display_name | Safety Research |
| topics[1].display_name | Ethics and Social Impacts of AI |
| topics[2].id | https://openalex.org/T10917 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9387000203132629 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Smart Grid Security and Resilience |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C155911762 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8857548236846924 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q422321 |
| concepts[0].display_name | Blueprint |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6365708708763123 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C98045186 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5561043620109558 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[2].display_name | Process (computing) |
| concepts[3].id | https://openalex.org/C139807058 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5525328516960144 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q352374 |
| concepts[3].display_name | Adaptation (eye) |
| concepts[4].id | https://openalex.org/C46686674 |
| concepts[4].level | 2 |
| concepts[4].score | 0.548725426197052 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q466303 |
| concepts[4].display_name | Boosting (machine learning) |
| concepts[5].id | https://openalex.org/C39389867 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5461462736129761 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q380767 |
| concepts[5].display_name | Corporate governance |
| concepts[6].id | https://openalex.org/C195094911 |
| concepts[6].level | 1 |
| concepts[6].score | 0.44445478916168213 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q14167904 |
| concepts[6].display_name | Process management |
| concepts[7].id | https://openalex.org/C56739046 |
| concepts[7].level | 1 |
| concepts[7].score | 0.43281474709510803 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192060 |
| concepts[7].display_name | Knowledge management |
| concepts[8].id | https://openalex.org/C109986646 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42564651370048523 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q546113 |
| concepts[8].display_name | Public policy |
| concepts[9].id | https://openalex.org/C539667460 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3552815020084381 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2414942 |
| concepts[9].display_name | Management science |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.28706350922584534 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.25950682163238525 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C17744445 |
| concepts[12].level | 0 |
| concepts[12].score | 0.12462025880813599 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[12].display_name | Political science |
| concepts[13].id | https://openalex.org/C187736073 |
| concepts[13].level | 1 |
| concepts[13].score | 0.11881223320960999 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[13].display_name | Management |
| concepts[14].id | https://openalex.org/C162324750 |
| concepts[14].level | 0 |
| concepts[14].score | 0.10382181406021118 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[14].display_name | Economics |
| concepts[15].id | https://openalex.org/C111919701 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[15].display_name | Operating system |
| concepts[16].id | https://openalex.org/C120665830 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[16].display_name | Optics |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| concepts[18].id | https://openalex.org/C78519656 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[18].display_name | Mechanical engineering |
| concepts[19].id | https://openalex.org/C199539241 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[19].display_name | Law |
| keywords[0].id | https://openalex.org/keywords/blueprint |
| keywords[0].score | 0.8857548236846924 |
| keywords[0].display_name | Blueprint |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6365708708763123 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/process |
| keywords[2].score | 0.5561043620109558 |
| keywords[2].display_name | Process (computing) |
| keywords[3].id | https://openalex.org/keywords/adaptation |
| keywords[3].score | 0.5525328516960144 |
| keywords[3].display_name | Adaptation (eye) |
| keywords[4].id | https://openalex.org/keywords/boosting |
| keywords[4].score | 0.548725426197052 |
| keywords[4].display_name | Boosting (machine learning) |
| keywords[5].id | https://openalex.org/keywords/corporate-governance |
| keywords[5].score | 0.5461462736129761 |
| keywords[5].display_name | Corporate governance |
| keywords[6].id | https://openalex.org/keywords/process-management |
| keywords[6].score | 0.44445478916168213 |
| keywords[6].display_name | Process management |
| keywords[7].id | https://openalex.org/keywords/knowledge-management |
| keywords[7].score | 0.43281474709510803 |
| keywords[7].display_name | Knowledge management |
| keywords[8].id | https://openalex.org/keywords/public-policy |
| keywords[8].score | 0.42564651370048523 |
| keywords[8].display_name | Public policy |
| keywords[9].id | https://openalex.org/keywords/management-science |
| keywords[9].score | 0.3552815020084381 |
| keywords[9].display_name | Management science |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.28706350922584534 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.25950682163238525 |
| keywords[11].display_name | Engineering |
| keywords[12].id | https://openalex.org/keywords/political-science |
| keywords[12].score | 0.12462025880813599 |
| keywords[12].display_name | Political science |
| keywords[13].id | https://openalex.org/keywords/management |
| keywords[13].score | 0.11881223320960999 |
| keywords[13].display_name | Management |
| keywords[14].id | https://openalex.org/keywords/economics |
| keywords[14].score | 0.10382181406021118 |
| keywords[14].display_name | Economics |
| language | en |
| locations[0].id | doi:10.1109/dcoss-iot58021.2023.00087 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2023 19th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT) |
| locations[0].landing_page_url | https://doi.org/10.1109/dcoss-iot58021.2023.00087 |
| locations[1].id | pmh:oai:zenodo.org:11059538 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400562 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[1].source.host_organization | https://openalex.org/I67311998 |
| locations[1].source.host_organization_name | European Organization for Nuclear Research |
| locations[1].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/article |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.1109/DCOSS-IoT58021.2023.00087 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5074376396 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Alessandro Amicone |
| authorships[0].affiliations[0].raw_affiliation_string | GFT Italy, Genoa, Italy |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alessandro Amicone |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | GFT Italy, Genoa, Italy |
| authorships[1].author.id | https://openalex.org/A5068262302 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Luca Marangoni |
| authorships[1].affiliations[0].raw_affiliation_string | GFT Italy, Trento, Italy |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Luca Marangoni |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | GFT Italy, Trento, Italy |
| authorships[2].author.id | https://openalex.org/A5092141468 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Alessandro Marceddu |
| authorships[2].affiliations[0].raw_affiliation_string | GFT Italy, Reggio Emilia, Italy |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Alessandro Marceddu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | GFT Italy, Reggio Emilia, Italy |
| authorships[3].author.id | https://openalex.org/A5092141467 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Massimo Miccoli |
| authorships[3].affiliations[0].raw_affiliation_string | GFT Italy, Trento, Italy |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Massimo Miccoli |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | GFT Italy, Trento, Italy |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/DCOSS-IoT58021.2023.00087 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | AI-Based Public Policy Making: A New holistic, Integrated and “AI by Design” Approach |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9879000186920166 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| related_works | https://openalex.org/W2523205315, https://openalex.org/W2589024847, https://openalex.org/W1571518467, https://openalex.org/W87991986, https://openalex.org/W4249381814, https://openalex.org/W2020291234, https://openalex.org/W2932303989, https://openalex.org/W1998940060, https://openalex.org/W1974251740, https://openalex.org/W2353783177 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:zenodo.org:11059538 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/article |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1109/DCOSS-IoT58021.2023.00087 |
| primary_location.id | doi:10.1109/dcoss-iot58021.2023.00087 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2023 19th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT) |
| primary_location.landing_page_url | https://doi.org/10.1109/dcoss-iot58021.2023.00087 |
| publication_date | 2023-06-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2964097310, https://openalex.org/W3026662013, https://openalex.org/W6640425456, https://openalex.org/W2535873859, https://openalex.org/W2964301649, https://openalex.org/W6717848421, https://openalex.org/W6810935678, https://openalex.org/W6734028196, https://openalex.org/W6846074861, https://openalex.org/W2799194071, https://openalex.org/W2896640274, https://openalex.org/W2101393389, https://openalex.org/W2946333210, https://openalex.org/W2950647473, https://openalex.org/W1945616565, https://openalex.org/W3017205423, https://openalex.org/W4306800522, https://openalex.org/W2432142698, https://openalex.org/W3080671792, https://openalex.org/W2799895073, https://openalex.org/W4226295912, https://openalex.org/W2591788621 |
| referenced_works_count | 22 |
| abstract_inverted_index.a | 56, 79, 126, 156, 165 |
| abstract_inverted_index.AI | 111 |
| abstract_inverted_index.an | 24 |
| abstract_inverted_index.as | 55, 95 |
| abstract_inverted_index.by | 110, 132 |
| abstract_inverted_index.in | 164 |
| abstract_inverted_index.is | 3, 27, 97 |
| abstract_inverted_index.of | 17, 44, 51, 58, 62, 161 |
| abstract_inverted_index.to | 73, 124 |
| abstract_inverted_index.The | 41, 87, 113 |
| abstract_inverted_index.all | 18 |
| abstract_inverted_index.and | 6, 12, 38, 66, 75, 77, 84, 130, 146, 159 |
| abstract_inverted_index.for | 9, 29, 91, 135, 149 |
| abstract_inverted_index.how | 23, 116 |
| abstract_inverted_index.new | 127 |
| abstract_inverted_index.the | 13, 19, 49, 60, 63, 98, 117, 140, 147, 153 |
| abstract_inverted_index.use | 50, 158 |
| abstract_inverted_index.(AI) | 54 |
| abstract_inverted_index.data | 92 |
| abstract_inverted_index.fast | 36 |
| abstract_inverted_index.more | 5, 7, 80 |
| abstract_inverted_index.most | 99 |
| abstract_inverted_index.open | 101 |
| abstract_inverted_index.that | 105 |
| abstract_inverted_index.this | 122, 162 |
| abstract_inverted_index.used | 109 |
| abstract_inverted_index.with | 33 |
| abstract_inverted_index.(i.e. | 69 |
| abstract_inverted_index.H2020 | 118 |
| abstract_inverted_index.going | 70 |
| abstract_inverted_index.known | 94 |
| abstract_inverted_index.means | 57 |
| abstract_inverted_index.model | 104, 123 |
| abstract_inverted_index.paper | 114, 154 |
| abstract_inverted_index.short | 34 |
| abstract_inverted_index.(VPME) | 145 |
| abstract_inverted_index.(first | 16 |
| abstract_inverted_index.Policy | 142 |
| abstract_inverted_index.beyond | 71 |
| abstract_inverted_index.common | 107 |
| abstract_inverted_index.events | 15 |
| abstract_inverted_index.making | 47, 169 |
| abstract_inverted_index.policy | 1, 46, 64, 137, 168 |
| abstract_inverted_index.public | 10, 136, 167 |
| abstract_inverted_index.recent | 14 |
| abstract_inverted_index.vision | 43 |
| abstract_inverted_index.crucial | 28 |
| abstract_inverted_index.entails | 48 |
| abstract_inverted_index.making, | 138 |
| abstract_inverted_index.mining, | 93 |
| abstract_inverted_index.process | 68, 90, 103 |
| abstract_inverted_index.project | 119 |
| abstract_inverted_index.promote | 125 |
| abstract_inverted_index.Covid-19 | 20 |
| abstract_inverted_index.approach | 26, 134, 163 |
| abstract_inverted_index.becoming | 4 |
| abstract_inverted_index.boosting | 78 |
| abstract_inverted_index.critical | 31 |
| abstract_inverted_index.experts. | 112 |
| abstract_inverted_index.managing | 30 |
| abstract_inverted_index.presents | 115, 155 |
| abstract_inverted_index.standard | 89, 102 |
| abstract_inverted_index.support. | 40 |
| abstract_inverted_index.ultimate | 42 |
| abstract_inverted_index.CRISP-DM, | 96 |
| abstract_inverted_index.Moreover, | 152 |
| abstract_inverted_index.Outbreak) | 21 |
| abstract_inverted_index.adaptive, | 82 |
| abstract_inverted_index.citizens' | 39 |
| abstract_inverted_index.describes | 106 |
| abstract_inverted_index.holistic, | 128 |
| abstract_inverted_index.leverages | 121 |
| abstract_inverted_index.practical | 157 |
| abstract_inverted_index.providing | 139 |
| abstract_inverted_index.real-life | 166 |
| abstract_inverted_index.Artificial | 52 |
| abstract_inverted_index.Management | 143 |
| abstract_inverted_index.adaptation | 74 |
| abstract_inverted_index.approaches | 108 |
| abstract_inverted_index.blueprints | 148 |
| abstract_inverted_index.efficiency | 61 |
| abstract_inverted_index.increasing | 59 |
| abstract_inverted_index.management | 67 |
| abstract_inverted_index.responses, | 35 |
| abstract_inverted_index.situations | 32 |
| abstract_inverted_index.validation | 160 |
| abstract_inverted_index.Environment | 144 |
| abstract_inverted_index.Virtualized | 141 |
| abstract_inverted_index.adaptation, | 37 |
| abstract_inverted_index.challenging | 8 |
| abstract_inverted_index.data-driven | 45 |
| abstract_inverted_index.development | 2, 65, 72 |
| abstract_inverted_index.governance. | 86 |
| abstract_inverted_index.integrated, | 129 |
| abstract_inverted_index.responsive, | 81 |
| abstract_inverted_index.widely-used | 100 |
| abstract_inverted_index.Intelligence | 53 |
| abstract_inverted_index.demonstrated | 22 |
| abstract_inverted_index.intelligent, | 83 |
| abstract_inverted_index.&ldquo;AI | 131 |
| abstract_inverted_index.optimization) | 76 |
| abstract_inverted_index.cross-industry | 88 |
| abstract_inverted_index.evidence-based | 25 |
| abstract_inverted_index.organizational | 150 |
| abstract_inverted_index.AI4PublicPolicy | 120 |
| abstract_inverted_index.administrations | 11 |
| abstract_inverted_index.citizen-centric | 85 |
| abstract_inverted_index.transformation. | 151 |
| abstract_inverted_index.design&rdquo; | 133 |
| abstract_inverted_index.case.&lt;/div&gt; | 170 |
| abstract_inverted_index.&lt;p&gt;&lt;strong&gt;Abstract:&lt;/strong&gt;&lt;/p&gt;\n&lt;div&gt;Public | 0 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.7438567 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |