AI-Based Severity Classification of Dementia Using Gait Analysis Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/s25196083
This study aims to explore the utility of artificial intelligence (AI) in classifying dementia severity based on gait analysis data and to examine how machine learning (ML) can address the limitations of conventional statistical approaches. The study included 34 individuals with mild cognitive impairment (MCI), 25 with mild dementia, 26 with moderate dementia, and 54 healthy controls. A support vector machine (SVM) classifier was employed to categorize dementia severity using gait parameters. As complexity and high dimensionality of gait data increase, traditional statistical methods may struggle to capture subtle patterns and interactions among variables. In contrast, ML techniques, including dimensionality reduction methods such as principal component analysis (PCA) and gradient-based feature selection, can effectively identify key gait features relevant to dementia severity classification. This study shows that ML can complement traditional statistical analyses by efficiently handling high-dimensional data and uncovering meaningful patterns that may be overlooked by conventional methods. Our findings highlight the promise of AI-based tools in advancing our understanding of gait characteristics in dementia and supporting the development of more accurate diagnostic models for complex or large datasets.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s25196083
- https://www.mdpi.com/1424-8220/25/19/6083/pdf?version=1759402141
- OA Status
- gold
- References
- 41
- OpenAlex ID
- https://openalex.org/W4414768489
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414768489Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s25196083Digital Object Identifier
- Title
-
AI-Based Severity Classification of Dementia Using Gait AnalysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-02Full publication date if available
- Authors
-
Gyu-Song Moon, Jaesung Cho, Hojin Choi, Yun Jin Kim, Gun‐Do Kim, Seong‐Ho JangList of authors in order
- Landing page
-
https://doi.org/10.3390/s25196083Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/25/19/6083/pdf?version=1759402141Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/25/19/6083/pdf?version=1759402141Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
41Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414768489 |
|---|---|
| doi | https://doi.org/10.3390/s25196083 |
| ids.doi | https://doi.org/10.3390/s25196083 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41094906 |
| ids.openalex | https://openalex.org/W4414768489 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000503 |
| mesh[1].descriptor_ui | D003704 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | physiopathology |
| mesh[1].descriptor_name | Dementia |
| mesh[2].qualifier_ui | Q000145 |
| mesh[2].descriptor_ui | D003704 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | classification |
| mesh[2].descriptor_name | Dementia |
| mesh[3].qualifier_ui | Q000175 |
| mesh[3].descriptor_ui | D003704 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | diagnosis |
| mesh[3].descriptor_name | Dementia |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000368 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Aged |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D008297 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Male |
| mesh[6].qualifier_ui | Q000379 |
| mesh[6].descriptor_ui | D000077107 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | methods |
| mesh[6].descriptor_name | Gait Analysis |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D005260 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Female |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D060388 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Support Vector Machine |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D001185 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Artificial Intelligence |
| mesh[10].qualifier_ui | Q000503 |
| mesh[10].descriptor_ui | D060825 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | physiopathology |
| mesh[10].descriptor_name | Cognitive Dysfunction |
| mesh[11].qualifier_ui | Q000175 |
| mesh[11].descriptor_ui | D060825 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | diagnosis |
| mesh[11].descriptor_name | Cognitive Dysfunction |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D025341 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Principal Component Analysis |
| mesh[13].qualifier_ui | Q000502 |
| mesh[13].descriptor_ui | D005684 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | physiology |
| mesh[13].descriptor_name | Gait |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D000069550 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Machine Learning |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D000369 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Aged, 80 and over |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D012720 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Severity of Illness Index |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D008875 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Middle Aged |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D006801 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Humans |
| mesh[19].qualifier_ui | Q000503 |
| mesh[19].descriptor_ui | D003704 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | physiopathology |
| mesh[19].descriptor_name | Dementia |
| mesh[20].qualifier_ui | Q000145 |
| mesh[20].descriptor_ui | D003704 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | classification |
| mesh[20].descriptor_name | Dementia |
| mesh[21].qualifier_ui | Q000175 |
| mesh[21].descriptor_ui | D003704 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | diagnosis |
| mesh[21].descriptor_name | Dementia |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D000368 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Aged |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D008297 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Male |
| mesh[24].qualifier_ui | Q000379 |
| mesh[24].descriptor_ui | D000077107 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | methods |
| mesh[24].descriptor_name | Gait Analysis |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D005260 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Female |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D060388 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Support Vector Machine |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D001185 |
| mesh[27].is_major_topic | True |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Artificial Intelligence |
| mesh[28].qualifier_ui | Q000503 |
| mesh[28].descriptor_ui | D060825 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | physiopathology |
| mesh[28].descriptor_name | Cognitive Dysfunction |
| mesh[29].qualifier_ui | Q000175 |
| mesh[29].descriptor_ui | D060825 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | diagnosis |
| mesh[29].descriptor_name | Cognitive Dysfunction |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D025341 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Principal Component Analysis |
| mesh[31].qualifier_ui | Q000502 |
| mesh[31].descriptor_ui | D005684 |
| mesh[31].is_major_topic | True |
| mesh[31].qualifier_name | physiology |
| mesh[31].descriptor_name | Gait |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D000069550 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Machine Learning |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D000369 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Aged, 80 and over |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D012720 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Severity of Illness Index |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D008875 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | Middle Aged |
| mesh[36].qualifier_ui | |
| mesh[36].descriptor_ui | D006801 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | |
| mesh[36].descriptor_name | Humans |
| mesh[37].qualifier_ui | Q000503 |
| mesh[37].descriptor_ui | D003704 |
| mesh[37].is_major_topic | True |
| mesh[37].qualifier_name | physiopathology |
| mesh[37].descriptor_name | Dementia |
| mesh[38].qualifier_ui | Q000145 |
| mesh[38].descriptor_ui | D003704 |
| mesh[38].is_major_topic | True |
| mesh[38].qualifier_name | classification |
| mesh[38].descriptor_name | Dementia |
| mesh[39].qualifier_ui | Q000175 |
| mesh[39].descriptor_ui | D003704 |
| mesh[39].is_major_topic | True |
| mesh[39].qualifier_name | diagnosis |
| mesh[39].descriptor_name | Dementia |
| mesh[40].qualifier_ui | |
| mesh[40].descriptor_ui | D000368 |
| mesh[40].is_major_topic | False |
| mesh[40].qualifier_name | |
| mesh[40].descriptor_name | Aged |
| mesh[41].qualifier_ui | |
| mesh[41].descriptor_ui | D008297 |
| mesh[41].is_major_topic | False |
| mesh[41].qualifier_name | |
| mesh[41].descriptor_name | Male |
| mesh[42].qualifier_ui | Q000379 |
| mesh[42].descriptor_ui | D000077107 |
| mesh[42].is_major_topic | True |
| mesh[42].qualifier_name | methods |
| mesh[42].descriptor_name | Gait Analysis |
| mesh[43].qualifier_ui | |
| mesh[43].descriptor_ui | D005260 |
| mesh[43].is_major_topic | False |
| mesh[43].qualifier_name | |
| mesh[43].descriptor_name | Female |
| mesh[44].qualifier_ui | |
| mesh[44].descriptor_ui | D060388 |
| mesh[44].is_major_topic | False |
| mesh[44].qualifier_name | |
| mesh[44].descriptor_name | Support Vector Machine |
| mesh[45].qualifier_ui | |
| mesh[45].descriptor_ui | D001185 |
| mesh[45].is_major_topic | True |
| mesh[45].qualifier_name | |
| mesh[45].descriptor_name | Artificial Intelligence |
| mesh[46].qualifier_ui | Q000503 |
| mesh[46].descriptor_ui | D060825 |
| mesh[46].is_major_topic | False |
| mesh[46].qualifier_name | physiopathology |
| mesh[46].descriptor_name | Cognitive Dysfunction |
| mesh[47].qualifier_ui | Q000175 |
| mesh[47].descriptor_ui | D060825 |
| mesh[47].is_major_topic | False |
| mesh[47].qualifier_name | diagnosis |
| mesh[47].descriptor_name | Cognitive Dysfunction |
| mesh[48].qualifier_ui | |
| mesh[48].descriptor_ui | D025341 |
| mesh[48].is_major_topic | False |
| mesh[48].qualifier_name | |
| mesh[48].descriptor_name | Principal Component Analysis |
| mesh[49].qualifier_ui | Q000502 |
| mesh[49].descriptor_ui | D005684 |
| mesh[49].is_major_topic | True |
| mesh[49].qualifier_name | physiology |
| mesh[49].descriptor_name | Gait |
| type | article |
| title | AI-Based Severity Classification of Dementia Using Gait Analysis |
| biblio.issue | 19 |
| biblio.volume | 25 |
| biblio.last_page | 6083 |
| biblio.first_page | 6083 |
| topics[0].id | https://openalex.org/T12740 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9977999925613403 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Gait Recognition and Analysis |
| topics[1].id | https://openalex.org/T10114 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9865000247955322 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3612 |
| topics[1].subfield.display_name | Physical Therapy, Sports Therapy and Rehabilitation |
| topics[1].display_name | Balance, Gait, and Falls Prevention |
| topics[2].id | https://openalex.org/T11097 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9577999711036682 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2738 |
| topics[2].subfield.display_name | Psychiatry and Mental health |
| topics[2].display_name | Cerebral Palsy and Movement Disorders |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| language | en |
| locations[0].id | doi:10.3390/s25196083 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/25/19/6083/pdf?version=1759402141 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s25196083 |
| locations[1].id | pmid:41094906 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41094906 |
| locations[2].id | pmh:oai:doaj.org/article:d1857e08d50b4506945df3f4c7ee728a |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 25, Iss 19, p 6083 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/d1857e08d50b4506945df3f4c7ee728a |
| locations[3].id | pmh:oai:europepmc.org:11337169 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12526784 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5110610303 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Gyu-Song Moon |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210124541 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Rehabilitation Medicine, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri-si 11923, Republic of Korea |
| authorships[0].institutions[0].id | https://openalex.org/I4210124541 |
| authorships[0].institutions[0].ror | https://ror.org/02f9avj37 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210124541 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Hanyang University Guri Hospital |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gangmin Moon |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Rehabilitation Medicine, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri-si 11923, Republic of Korea |
| authorships[1].author.id | https://openalex.org/A5024163557 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jaesung Cho |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I49946491 |
| authorships[1].affiliations[0].raw_affiliation_string | Robotics Lab in the Research and Development Division of Hyundai Motor Company, 37, Cheoldobangmulgwan-ro, Uiwang-si 16082, Republic of Korea |
| authorships[1].institutions[0].id | https://openalex.org/I49946491 |
| authorships[1].institutions[0].ror | https://ror.org/016kvft77 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I197312522, https://openalex.org/I49946491 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Hyundai Motors (South Korea) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jaesung Cho |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Robotics Lab in the Research and Development Division of Hyundai Motor Company, 37, Cheoldobangmulgwan-ro, Uiwang-si 16082, Republic of Korea |
| authorships[2].author.id | https://openalex.org/A5014833038 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9637-4423 |
| authorships[2].author.display_name | Hojin Choi |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210124541 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Neurology Medicine, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri-si 11923, Republic of Korea |
| authorships[2].institutions[0].id | https://openalex.org/I4210124541 |
| authorships[2].institutions[0].ror | https://ror.org/02f9avj37 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210124541 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Hanyang University Guri Hospital |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hojin Choi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Neurology Medicine, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri-si 11923, Republic of Korea |
| authorships[3].author.id | https://openalex.org/A5102016703 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3202-2696 |
| authorships[3].author.display_name | Yun Jin Kim |
| authorships[3].countries | KR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4575257, https://openalex.org/I93906172 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Pre-Medicine, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seoul 04763, Republic of Korea |
| authorships[3].institutions[0].id | https://openalex.org/I93906172 |
| authorships[3].institutions[0].ror | https://ror.org/018pdh902 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I93906172 |
| authorships[3].institutions[0].country_code | KR |
| authorships[3].institutions[0].display_name | Anyang University |
| authorships[3].institutions[1].id | https://openalex.org/I4575257 |
| authorships[3].institutions[1].ror | https://ror.org/046865y68 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I4575257 |
| authorships[3].institutions[1].country_code | KR |
| authorships[3].institutions[1].display_name | Hanyang University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yunjin Kim |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Pre-Medicine, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seoul 04763, Republic of Korea |
| authorships[4].author.id | https://openalex.org/A5069548951 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5965-0495 |
| authorships[4].author.display_name | Gun‐Do Kim |
| authorships[4].countries | KR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210107562 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Sports & Leisure Studies, College of Healthcare & Biotechnology, Semyung University, 65, Semyeong-ro, Jecheon-si 27136, Republic of Korea |
| authorships[4].institutions[0].id | https://openalex.org/I4210107562 |
| authorships[4].institutions[0].ror | https://ror.org/01d100w34 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210107562 |
| authorships[4].institutions[0].country_code | KR |
| authorships[4].institutions[0].display_name | Semyung University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Gun-Do Kim |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Sports & Leisure Studies, College of Healthcare & Biotechnology, Semyung University, 65, Semyeong-ro, Jecheon-si 27136, Republic of Korea |
| authorships[5].author.id | https://openalex.org/A5103007532 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0241-0954 |
| authorships[5].author.display_name | Seong‐Ho Jang |
| authorships[5].countries | KR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210124541 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Rehabilitation Medicine, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri-si 11923, Republic of Korea |
| authorships[5].institutions[0].id | https://openalex.org/I4210124541 |
| authorships[5].institutions[0].ror | https://ror.org/02f9avj37 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210124541 |
| authorships[5].institutions[0].country_code | KR |
| authorships[5].institutions[0].display_name | Hanyang University Guri Hospital |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Seong-Ho Jang |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Department of Rehabilitation Medicine, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri-si 11923, Republic of Korea |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/25/19/6083/pdf?version=1759402141 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | AI-Based Severity Classification of Dementia Using Gait Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12740 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9977999925613403 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Gait Recognition and Analysis |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/s25196083 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/25/19/6083/pdf?version=1759402141 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s25196083 |
| primary_location.id | doi:10.3390/s25196083 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/25/19/6083/pdf?version=1759402141 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s25196083 |
| publication_date | 2025-10-02 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4313328167, https://openalex.org/W4206055706, https://openalex.org/W2018317802, https://openalex.org/W3012896574, https://openalex.org/W2117506003, https://openalex.org/W2809008550, https://openalex.org/W4321088026, https://openalex.org/W4377104495, https://openalex.org/W4281653966, https://openalex.org/W4313275909, https://openalex.org/W1993462595, https://openalex.org/W2001499053, https://openalex.org/W4405850055, https://openalex.org/W4392845697, https://openalex.org/W4399324265, https://openalex.org/W4206286792, https://openalex.org/W4283725990, https://openalex.org/W4385294584, https://openalex.org/W4392353904, https://openalex.org/W3115858378, https://openalex.org/W4283591036, https://openalex.org/W1998070527, https://openalex.org/W2586431453, https://openalex.org/W2256375944, https://openalex.org/W3162666359, https://openalex.org/W2735045133, https://openalex.org/W3188502802, https://openalex.org/W4296825675, https://openalex.org/W4321786397, https://openalex.org/W4391100790, https://openalex.org/W3216794426, https://openalex.org/W3124681663, https://openalex.org/W3108944498, https://openalex.org/W2613088714, https://openalex.org/W2036163780, https://openalex.org/W4403378657, https://openalex.org/W4400568514, https://openalex.org/W4411004584, https://openalex.org/W4386968078, https://openalex.org/W4386573974, https://openalex.org/W4399751888 |
| referenced_works_count | 41 |
| abstract_inverted_index.A | 57 |
| abstract_inverted_index.25 | 45 |
| abstract_inverted_index.26 | 49 |
| abstract_inverted_index.34 | 38 |
| abstract_inverted_index.54 | 54 |
| abstract_inverted_index.As | 72 |
| abstract_inverted_index.In | 94 |
| abstract_inverted_index.ML | 96, 127 |
| abstract_inverted_index.as | 103 |
| abstract_inverted_index.be | 144 |
| abstract_inverted_index.by | 133, 146 |
| abstract_inverted_index.in | 11, 157, 164 |
| abstract_inverted_index.of | 7, 31, 77, 154, 161, 170 |
| abstract_inverted_index.on | 16 |
| abstract_inverted_index.or | 177 |
| abstract_inverted_index.to | 3, 21, 65, 86, 119 |
| abstract_inverted_index.Our | 149 |
| abstract_inverted_index.The | 35 |
| abstract_inverted_index.and | 20, 53, 74, 90, 108, 138, 166 |
| abstract_inverted_index.can | 27, 112, 128 |
| abstract_inverted_index.for | 175 |
| abstract_inverted_index.how | 23 |
| abstract_inverted_index.key | 115 |
| abstract_inverted_index.may | 84, 143 |
| abstract_inverted_index.our | 159 |
| abstract_inverted_index.the | 5, 29, 152, 168 |
| abstract_inverted_index.was | 63 |
| abstract_inverted_index.(AI) | 10 |
| abstract_inverted_index.(ML) | 26 |
| abstract_inverted_index.This | 0, 123 |
| abstract_inverted_index.aims | 2 |
| abstract_inverted_index.data | 19, 79, 137 |
| abstract_inverted_index.gait | 17, 70, 78, 116, 162 |
| abstract_inverted_index.high | 75 |
| abstract_inverted_index.mild | 41, 47 |
| abstract_inverted_index.more | 171 |
| abstract_inverted_index.such | 102 |
| abstract_inverted_index.that | 126, 142 |
| abstract_inverted_index.with | 40, 46, 50 |
| abstract_inverted_index.(PCA) | 107 |
| abstract_inverted_index.(SVM) | 61 |
| abstract_inverted_index.among | 92 |
| abstract_inverted_index.based | 15 |
| abstract_inverted_index.large | 178 |
| abstract_inverted_index.shows | 125 |
| abstract_inverted_index.study | 1, 36, 124 |
| abstract_inverted_index.tools | 156 |
| abstract_inverted_index.using | 69 |
| abstract_inverted_index.(MCI), | 44 |
| abstract_inverted_index.models | 174 |
| abstract_inverted_index.subtle | 88 |
| abstract_inverted_index.vector | 59 |
| abstract_inverted_index.address | 28 |
| abstract_inverted_index.capture | 87 |
| abstract_inverted_index.complex | 176 |
| abstract_inverted_index.examine | 22 |
| abstract_inverted_index.explore | 4 |
| abstract_inverted_index.feature | 110 |
| abstract_inverted_index.healthy | 55 |
| abstract_inverted_index.machine | 24, 60 |
| abstract_inverted_index.methods | 83, 101 |
| abstract_inverted_index.promise | 153 |
| abstract_inverted_index.support | 58 |
| abstract_inverted_index.utility | 6 |
| abstract_inverted_index.AI-based | 155 |
| abstract_inverted_index.accurate | 172 |
| abstract_inverted_index.analyses | 132 |
| abstract_inverted_index.analysis | 18, 106 |
| abstract_inverted_index.dementia | 13, 67, 120, 165 |
| abstract_inverted_index.employed | 64 |
| abstract_inverted_index.features | 117 |
| abstract_inverted_index.findings | 150 |
| abstract_inverted_index.handling | 135 |
| abstract_inverted_index.identify | 114 |
| abstract_inverted_index.included | 37 |
| abstract_inverted_index.learning | 25 |
| abstract_inverted_index.methods. | 148 |
| abstract_inverted_index.moderate | 51 |
| abstract_inverted_index.patterns | 89, 141 |
| abstract_inverted_index.relevant | 118 |
| abstract_inverted_index.severity | 14, 68, 121 |
| abstract_inverted_index.struggle | 85 |
| abstract_inverted_index.advancing | 158 |
| abstract_inverted_index.cognitive | 42 |
| abstract_inverted_index.component | 105 |
| abstract_inverted_index.contrast, | 95 |
| abstract_inverted_index.controls. | 56 |
| abstract_inverted_index.datasets. | 179 |
| abstract_inverted_index.dementia, | 48, 52 |
| abstract_inverted_index.highlight | 151 |
| abstract_inverted_index.including | 98 |
| abstract_inverted_index.increase, | 80 |
| abstract_inverted_index.principal | 104 |
| abstract_inverted_index.reduction | 100 |
| abstract_inverted_index.artificial | 8 |
| abstract_inverted_index.categorize | 66 |
| abstract_inverted_index.classifier | 62 |
| abstract_inverted_index.complement | 129 |
| abstract_inverted_index.complexity | 73 |
| abstract_inverted_index.diagnostic | 173 |
| abstract_inverted_index.impairment | 43 |
| abstract_inverted_index.meaningful | 140 |
| abstract_inverted_index.overlooked | 145 |
| abstract_inverted_index.selection, | 111 |
| abstract_inverted_index.supporting | 167 |
| abstract_inverted_index.uncovering | 139 |
| abstract_inverted_index.variables. | 93 |
| abstract_inverted_index.approaches. | 34 |
| abstract_inverted_index.classifying | 12 |
| abstract_inverted_index.development | 169 |
| abstract_inverted_index.effectively | 113 |
| abstract_inverted_index.efficiently | 134 |
| abstract_inverted_index.individuals | 39 |
| abstract_inverted_index.limitations | 30 |
| abstract_inverted_index.parameters. | 71 |
| abstract_inverted_index.statistical | 33, 82, 131 |
| abstract_inverted_index.techniques, | 97 |
| abstract_inverted_index.traditional | 81, 130 |
| abstract_inverted_index.conventional | 32, 147 |
| abstract_inverted_index.intelligence | 9 |
| abstract_inverted_index.interactions | 91 |
| abstract_inverted_index.understanding | 160 |
| abstract_inverted_index.dimensionality | 76, 99 |
| abstract_inverted_index.gradient-based | 109 |
| abstract_inverted_index.characteristics | 163 |
| abstract_inverted_index.classification. | 122 |
| abstract_inverted_index.high-dimensional | 136 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5110610303, https://openalex.org/A5103007532 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I4210124541 |
| citation_normalized_percentile.value | 0.48626164 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |