AI-Based Stroke Prediction Using Machine Learning: A Comparative Model Evaluation with SHAP Explainability Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.36948/ijfmr.2025.v07i04.51727
Stroke is a major global health concern and a leading cause of mortality and long-term disability. Early detection through predictive modeling can significantly improve clinical outcomes and reduce the burden on healthcare systems. This study presents a comprehensive machine learning approach to stroke prediction using clinical data. Three classifiers Random Forest, XGBoost, and Logistic Regression were implemented and evaluated based on accuracy, AUC, and confusion matrices. SHAP (Shapley Additive explanations) was employed to interpret the model decisions. Among the models, XGBoost demonstrated the highest AUC. SHAP analysis revealed that age, average glucose level, and BMI were key contributing features. This research underlines the potential of explainable AI in enhancing medical decision-making.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.36948/ijfmr.2025.v07i04.51727
- https://www.ijfmr.com/papers/2025/4/51727.pdf
- OA Status
- hybrid
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412596512
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412596512Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.36948/ijfmr.2025.v07i04.51727Digital Object Identifier
- Title
-
AI-Based Stroke Prediction Using Machine Learning: A Comparative Model Evaluation with SHAP ExplainabilityWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-22Full publication date if available
- Authors
-
Chitra Devi Thangavelu, Gnanaguru PP, Arunkumar VL, Anlin Sahaya Infant Tinu MList of authors in order
- Landing page
-
https://doi.org/10.36948/ijfmr.2025.v07i04.51727Publisher landing page
- PDF URL
-
https://www.ijfmr.com/papers/2025/4/51727.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://www.ijfmr.com/papers/2025/4/51727.pdfDirect OA link when available
- Concepts
-
Stroke (engine), Artificial intelligence, Machine learning, Computer science, Engineering, Mechanical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412596512 |
|---|---|
| doi | https://doi.org/10.36948/ijfmr.2025.v07i04.51727 |
| ids.doi | https://doi.org/10.36948/ijfmr.2025.v07i04.51727 |
| ids.openalex | https://openalex.org/W4412596512 |
| fwci | 0.0 |
| type | article |
| title | AI-Based Stroke Prediction Using Machine Learning: A Comparative Model Evaluation with SHAP Explainability |
| biblio.issue | 4 |
| biblio.volume | 7 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10227 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9822999835014343 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2713 |
| topics[0].subfield.display_name | Epidemiology |
| topics[0].display_name | Acute Ischemic Stroke Management |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780645631 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5590342879295349 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q671554 |
| concepts[0].display_name | Stroke (engine) |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.4972999393939972 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4968920052051544 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.459065705537796 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C127413603 |
| concepts[4].level | 0 |
| concepts[4].score | 0.13692691922187805 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[4].display_name | Engineering |
| concepts[5].id | https://openalex.org/C78519656 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[5].display_name | Mechanical engineering |
| keywords[0].id | https://openalex.org/keywords/stroke |
| keywords[0].score | 0.5590342879295349 |
| keywords[0].display_name | Stroke (engine) |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.4972999393939972 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.4968920052051544 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.459065705537796 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/engineering |
| keywords[4].score | 0.13692691922187805 |
| keywords[4].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.36948/ijfmr.2025.v07i04.51727 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210207214 |
| locations[0].source.issn | 2582-2160 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2582-2160 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal For Multidisciplinary Research |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | https://www.ijfmr.com/papers/2025/4/51727.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal For Multidisciplinary Research |
| locations[0].landing_page_url | https://doi.org/10.36948/ijfmr.2025.v07i04.51727 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5119052779 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Chitra Devi Thangavelu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chitra Devi Thangavelu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5119052780 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Gnanaguru PP |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gnanaguru PP |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5119052781 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Arunkumar VL |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Arunkumar VL |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101556643 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Anlin Sahaya Infant Tinu M |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Abhilash Joshua M |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ijfmr.com/papers/2025/4/51727.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | AI-Based Stroke Prediction Using Machine Learning: A Comparative Model Evaluation with SHAP Explainability |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10227 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9822999835014343 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2713 |
| primary_topic.subfield.display_name | Epidemiology |
| primary_topic.display_name | Acute Ischemic Stroke Management |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.36948/ijfmr.2025.v07i04.51727 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210207214 |
| best_oa_location.source.issn | 2582-2160 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2582-2160 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal For Multidisciplinary Research |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | https://www.ijfmr.com/papers/2025/4/51727.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal For Multidisciplinary Research |
| best_oa_location.landing_page_url | https://doi.org/10.36948/ijfmr.2025.v07i04.51727 |
| primary_location.id | doi:10.36948/ijfmr.2025.v07i04.51727 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210207214 |
| primary_location.source.issn | 2582-2160 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2582-2160 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal For Multidisciplinary Research |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | https://www.ijfmr.com/papers/2025/4/51727.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal For Multidisciplinary Research |
| primary_location.landing_page_url | https://doi.org/10.36948/ijfmr.2025.v07i04.51727 |
| publication_date | 2025-07-22 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 8, 36 |
| abstract_inverted_index.AI | 106 |
| abstract_inverted_index.in | 107 |
| abstract_inverted_index.is | 1 |
| abstract_inverted_index.of | 11, 104 |
| abstract_inverted_index.on | 30, 60 |
| abstract_inverted_index.to | 41, 72 |
| abstract_inverted_index.BMI | 94 |
| abstract_inverted_index.and | 7, 13, 26, 52, 57, 63, 93 |
| abstract_inverted_index.can | 21 |
| abstract_inverted_index.key | 96 |
| abstract_inverted_index.the | 28, 74, 78, 82, 102 |
| abstract_inverted_index.was | 70 |
| abstract_inverted_index.AUC, | 62 |
| abstract_inverted_index.AUC. | 84 |
| abstract_inverted_index.SHAP | 66, 85 |
| abstract_inverted_index.This | 33, 99 |
| abstract_inverted_index.age, | 89 |
| abstract_inverted_index.that | 88 |
| abstract_inverted_index.were | 55, 95 |
| abstract_inverted_index.Among | 77 |
| abstract_inverted_index.Early | 16 |
| abstract_inverted_index.Three | 47 |
| abstract_inverted_index.based | 59 |
| abstract_inverted_index.cause | 10 |
| abstract_inverted_index.data. | 46 |
| abstract_inverted_index.major | 3 |
| abstract_inverted_index.model | 75 |
| abstract_inverted_index.study | 34 |
| abstract_inverted_index.using | 44 |
| abstract_inverted_index.Random | 49 |
| abstract_inverted_index.Stroke | 0 |
| abstract_inverted_index.burden | 29 |
| abstract_inverted_index.global | 4 |
| abstract_inverted_index.health | 5 |
| abstract_inverted_index.level, | 92 |
| abstract_inverted_index.reduce | 27 |
| abstract_inverted_index.stroke | 42 |
| abstract_inverted_index.Forest, | 50 |
| abstract_inverted_index.XGBoost | 80 |
| abstract_inverted_index.average | 90 |
| abstract_inverted_index.concern | 6 |
| abstract_inverted_index.glucose | 91 |
| abstract_inverted_index.highest | 83 |
| abstract_inverted_index.improve | 23 |
| abstract_inverted_index.leading | 9 |
| abstract_inverted_index.machine | 38 |
| abstract_inverted_index.medical | 109 |
| abstract_inverted_index.models, | 79 |
| abstract_inverted_index.through | 18 |
| abstract_inverted_index.(Shapley | 67 |
| abstract_inverted_index.Additive | 68 |
| abstract_inverted_index.Logistic | 53 |
| abstract_inverted_index.XGBoost, | 51 |
| abstract_inverted_index.analysis | 86 |
| abstract_inverted_index.approach | 40 |
| abstract_inverted_index.clinical | 24, 45 |
| abstract_inverted_index.employed | 71 |
| abstract_inverted_index.learning | 39 |
| abstract_inverted_index.modeling | 20 |
| abstract_inverted_index.outcomes | 25 |
| abstract_inverted_index.presents | 35 |
| abstract_inverted_index.research | 100 |
| abstract_inverted_index.revealed | 87 |
| abstract_inverted_index.systems. | 32 |
| abstract_inverted_index.accuracy, | 61 |
| abstract_inverted_index.confusion | 64 |
| abstract_inverted_index.detection | 17 |
| abstract_inverted_index.enhancing | 108 |
| abstract_inverted_index.evaluated | 58 |
| abstract_inverted_index.features. | 98 |
| abstract_inverted_index.interpret | 73 |
| abstract_inverted_index.long-term | 14 |
| abstract_inverted_index.matrices. | 65 |
| abstract_inverted_index.mortality | 12 |
| abstract_inverted_index.potential | 103 |
| abstract_inverted_index.Regression | 54 |
| abstract_inverted_index.decisions. | 76 |
| abstract_inverted_index.healthcare | 31 |
| abstract_inverted_index.prediction | 43 |
| abstract_inverted_index.predictive | 19 |
| abstract_inverted_index.underlines | 101 |
| abstract_inverted_index.classifiers | 48 |
| abstract_inverted_index.disability. | 15 |
| abstract_inverted_index.explainable | 105 |
| abstract_inverted_index.implemented | 56 |
| abstract_inverted_index.contributing | 97 |
| abstract_inverted_index.demonstrated | 81 |
| abstract_inverted_index.comprehensive | 37 |
| abstract_inverted_index.explanations) | 69 |
| abstract_inverted_index.significantly | 22 |
| abstract_inverted_index.decision-making. | 110 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.39464926 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |