AI Conversational Interviewing: Transforming Surveys with LLMs as Adaptive Interviewers Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.01824
Traditional methods for eliciting people's opinions face a trade-off between depth and scale: structured surveys enable large-scale data collection but limit respondents' ability to voice their opinions in their own words, while conversational interviews provide deeper insights but are resource-intensive. This study explores the potential of replacing human interviewers with large language models (LLMs) to conduct scalable conversational interviews. Our goal is to assess the performance of AI Conversational Interviewing and to identify opportunities for improvement in a controlled environment. We conducted a small-scale, in-depth study with university students who were randomly assigned to a conversational interview by either AI or human interviewers, both employing identical questionnaires on political topics. Various quantitative and qualitative measures assessed interviewer adherence to guidelines, response quality, participant engagement, and overall interview efficacy. The findings indicate the viability of AI Conversational Interviewing in producing quality data comparable to traditional methods, with the added benefit of scalability. We publish our data and materials for re-use and present specific recommendations for effective implementation.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.01824
- https://arxiv.org/pdf/2410.01824
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403853768
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403853768Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.01824Digital Object Identifier
- Title
-
AI Conversational Interviewing: Transforming Surveys with LLMs as Adaptive InterviewersWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-16Full publication date if available
- Authors
-
Alexander Wuttke, Matthias Aßenmacher, Christopher Klamm, Michael Lang, Quirin Würschinger, Frauke KreuterList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.01824Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.01824Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.01824Direct OA link when available
- Concepts
-
Interview, Psychology, Social psychology, Computer science, Applied psychology, Political science, LawTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403853768 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.01824 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.01824 |
| ids.openalex | https://openalex.org/W4403853768 |
| fwci | 0.24339971 |
| type | preprint |
| title | AI Conversational Interviewing: Transforming Surveys with LLMs as Adaptive Interviewers |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11636 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9886999726295471 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2718 |
| topics[0].subfield.display_name | Health Informatics |
| topics[0].display_name | Artificial Intelligence in Healthcare and Education |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C24845683 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8703960180282593 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q178651 |
| concepts[0].display_name | Interview |
| concepts[1].id | https://openalex.org/C15744967 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4945795238018036 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[1].display_name | Psychology |
| concepts[2].id | https://openalex.org/C77805123 |
| concepts[2].level | 1 |
| concepts[2].score | 0.38091322779655457 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[2].display_name | Social psychology |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.33499598503112793 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C75630572 |
| concepts[4].level | 1 |
| concepts[4].score | 0.33264145255088806 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q538904 |
| concepts[4].display_name | Applied psychology |
| concepts[5].id | https://openalex.org/C17744445 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3160399794578552 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[5].display_name | Political science |
| concepts[6].id | https://openalex.org/C199539241 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[6].display_name | Law |
| keywords[0].id | https://openalex.org/keywords/interview |
| keywords[0].score | 0.8703960180282593 |
| keywords[0].display_name | Interview |
| keywords[1].id | https://openalex.org/keywords/psychology |
| keywords[1].score | 0.4945795238018036 |
| keywords[1].display_name | Psychology |
| keywords[2].id | https://openalex.org/keywords/social-psychology |
| keywords[2].score | 0.38091322779655457 |
| keywords[2].display_name | Social psychology |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.33499598503112793 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/applied-psychology |
| keywords[4].score | 0.33264145255088806 |
| keywords[4].display_name | Applied psychology |
| keywords[5].id | https://openalex.org/keywords/political-science |
| keywords[5].score | 0.3160399794578552 |
| keywords[5].display_name | Political science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.01824 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.01824 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.01824 |
| locations[1].id | doi:10.48550/arxiv.2410.01824 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.01824 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5004036470 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9579-5357 |
| authorships[0].author.display_name | Alexander Wuttke |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wuttke, Alexander |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5114439647 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Matthias Aßenmacher |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Aßenmacher, Matthias |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5114439648 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Christopher Klamm |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Klamm, Christopher |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5011132491 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2466-2589 |
| authorships[3].author.display_name | Michael Lang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lang, Max M. |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5114439649 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Quirin Würschinger |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Würschinger, Quirin |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5038390320 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7339-2645 |
| authorships[5].author.display_name | Frauke Kreuter |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Kreuter, Frauke |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.01824 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | AI Conversational Interviewing: Transforming Surveys with LLMs as Adaptive Interviewers |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11636 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9886999726295471 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2718 |
| primary_topic.subfield.display_name | Health Informatics |
| primary_topic.display_name | Artificial Intelligence in Healthcare and Education |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4391375266, https://openalex.org/W4235390613, https://openalex.org/W2010073985, https://openalex.org/W2005156726, https://openalex.org/W1979650037, https://openalex.org/W1930429402, https://openalex.org/W2461828801, https://openalex.org/W2064700171 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.01824 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.01824 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.01824 |
| primary_location.id | pmh:oai:arXiv.org:2410.01824 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.01824 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.01824 |
| publication_date | 2024-09-16 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 7, 77, 82, 94 |
| abstract_inverted_index.AI | 67, 99, 134 |
| abstract_inverted_index.We | 80, 151 |
| abstract_inverted_index.by | 97 |
| abstract_inverted_index.in | 27, 76, 137 |
| abstract_inverted_index.is | 61 |
| abstract_inverted_index.of | 45, 66, 133, 149 |
| abstract_inverted_index.on | 107 |
| abstract_inverted_index.or | 100 |
| abstract_inverted_index.to | 23, 54, 62, 71, 93, 118, 142 |
| abstract_inverted_index.Our | 59 |
| abstract_inverted_index.The | 128 |
| abstract_inverted_index.and | 11, 70, 112, 124, 155, 159 |
| abstract_inverted_index.are | 38 |
| abstract_inverted_index.but | 19, 37 |
| abstract_inverted_index.for | 2, 74, 157, 163 |
| abstract_inverted_index.our | 153 |
| abstract_inverted_index.own | 29 |
| abstract_inverted_index.the | 43, 64, 131, 146 |
| abstract_inverted_index.who | 89 |
| abstract_inverted_index.This | 40 |
| abstract_inverted_index.both | 103 |
| abstract_inverted_index.data | 17, 140, 154 |
| abstract_inverted_index.face | 6 |
| abstract_inverted_index.goal | 60 |
| abstract_inverted_index.were | 90 |
| abstract_inverted_index.with | 49, 86, 145 |
| abstract_inverted_index.added | 147 |
| abstract_inverted_index.depth | 10 |
| abstract_inverted_index.human | 47, 101 |
| abstract_inverted_index.large | 50 |
| abstract_inverted_index.limit | 20 |
| abstract_inverted_index.study | 41, 85 |
| abstract_inverted_index.their | 25, 28 |
| abstract_inverted_index.voice | 24 |
| abstract_inverted_index.while | 31 |
| abstract_inverted_index.(LLMs) | 53 |
| abstract_inverted_index.assess | 63 |
| abstract_inverted_index.deeper | 35 |
| abstract_inverted_index.either | 98 |
| abstract_inverted_index.enable | 15 |
| abstract_inverted_index.models | 52 |
| abstract_inverted_index.re-use | 158 |
| abstract_inverted_index.scale: | 12 |
| abstract_inverted_index.words, | 30 |
| abstract_inverted_index.Various | 110 |
| abstract_inverted_index.ability | 22 |
| abstract_inverted_index.benefit | 148 |
| abstract_inverted_index.between | 9 |
| abstract_inverted_index.conduct | 55 |
| abstract_inverted_index.methods | 1 |
| abstract_inverted_index.overall | 125 |
| abstract_inverted_index.present | 160 |
| abstract_inverted_index.provide | 34 |
| abstract_inverted_index.publish | 152 |
| abstract_inverted_index.quality | 139 |
| abstract_inverted_index.surveys | 14 |
| abstract_inverted_index.topics. | 109 |
| abstract_inverted_index.assessed | 115 |
| abstract_inverted_index.assigned | 92 |
| abstract_inverted_index.explores | 42 |
| abstract_inverted_index.findings | 129 |
| abstract_inverted_index.identify | 72 |
| abstract_inverted_index.in-depth | 84 |
| abstract_inverted_index.indicate | 130 |
| abstract_inverted_index.insights | 36 |
| abstract_inverted_index.language | 51 |
| abstract_inverted_index.measures | 114 |
| abstract_inverted_index.methods, | 144 |
| abstract_inverted_index.opinions | 5, 26 |
| abstract_inverted_index.people's | 4 |
| abstract_inverted_index.quality, | 121 |
| abstract_inverted_index.randomly | 91 |
| abstract_inverted_index.response | 120 |
| abstract_inverted_index.scalable | 56 |
| abstract_inverted_index.specific | 161 |
| abstract_inverted_index.students | 88 |
| abstract_inverted_index.adherence | 117 |
| abstract_inverted_index.conducted | 81 |
| abstract_inverted_index.effective | 164 |
| abstract_inverted_index.efficacy. | 127 |
| abstract_inverted_index.eliciting | 3 |
| abstract_inverted_index.employing | 104 |
| abstract_inverted_index.identical | 105 |
| abstract_inverted_index.interview | 96, 126 |
| abstract_inverted_index.materials | 156 |
| abstract_inverted_index.political | 108 |
| abstract_inverted_index.potential | 44 |
| abstract_inverted_index.producing | 138 |
| abstract_inverted_index.replacing | 46 |
| abstract_inverted_index.trade-off | 8 |
| abstract_inverted_index.viability | 132 |
| abstract_inverted_index.collection | 18 |
| abstract_inverted_index.comparable | 141 |
| abstract_inverted_index.controlled | 78 |
| abstract_inverted_index.interviews | 33 |
| abstract_inverted_index.structured | 13 |
| abstract_inverted_index.university | 87 |
| abstract_inverted_index.Traditional | 0 |
| abstract_inverted_index.engagement, | 123 |
| abstract_inverted_index.guidelines, | 119 |
| abstract_inverted_index.improvement | 75 |
| abstract_inverted_index.interviewer | 116 |
| abstract_inverted_index.interviews. | 58 |
| abstract_inverted_index.large-scale | 16 |
| abstract_inverted_index.participant | 122 |
| abstract_inverted_index.performance | 65 |
| abstract_inverted_index.qualitative | 113 |
| abstract_inverted_index.traditional | 143 |
| abstract_inverted_index.Interviewing | 69, 136 |
| abstract_inverted_index.environment. | 79 |
| abstract_inverted_index.interviewers | 48 |
| abstract_inverted_index.quantitative | 111 |
| abstract_inverted_index.respondents' | 21 |
| abstract_inverted_index.scalability. | 150 |
| abstract_inverted_index.small-scale, | 83 |
| abstract_inverted_index.interviewers, | 102 |
| abstract_inverted_index.opportunities | 73 |
| abstract_inverted_index.Conversational | 68, 135 |
| abstract_inverted_index.conversational | 32, 57, 95 |
| abstract_inverted_index.questionnaires | 106 |
| abstract_inverted_index.implementation. | 165 |
| abstract_inverted_index.recommendations | 162 |
| abstract_inverted_index.resource-intensive. | 39 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.53535354 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |