AI-driven data integration: Transforming enterprise data pipelines through machine learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.30574/wjaets.2025.15.1.0245
This article examines the transformative impact of artificial intelligence on enterprise data integration processes, with a particular focus on how machine learning algorithms are revolutionizing traditional approaches to data mapping, transformation, and maintenance. The article explores the evolution from manual integration methodologies to intelligent, self-adjusting data pipelines that automatically respond to changing data patterns and requirements. The article identifies key machine learning techniques enabling automated schema matching, intelligent anomaly detection, and advanced data cleaning capabilities that significantly reduce human intervention while improving accuracy and throughput. By analyzing several enterprise case studies, the article demonstrates how AI-driven integration systems substantially reduce implementation timeframes and maintenance overhead compared to traditional ETL processes. The article also addresses emerging architectural frameworks for adaptive data pipelines and provides a forward-looking perspective on self-healing integration systems. The article suggests that organizations implementing AI-powered data integration solutions gain substantial competitive advantages through increased operational efficiency, improved data quality, and enhanced ability to scale data operations in response to growing business demands.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.30574/wjaets.2025.15.1.0245
- OA Status
- hybrid
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409421258
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409421258Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.30574/wjaets.2025.15.1.0245Digital Object Identifier
- Title
-
AI-driven data integration: Transforming enterprise data pipelines through machine learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-15Full publication date if available
- Authors
-
N. V. Subba ReddyList of authors in order
- Landing page
-
https://doi.org/10.30574/wjaets.2025.15.1.0245Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.30574/wjaets.2025.15.1.0245Direct OA link when available
- Concepts
-
Data integration, Computer science, Pipeline transport, Data science, Engineering, Data mining, Mechanical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409421258 |
|---|---|
| doi | https://doi.org/10.30574/wjaets.2025.15.1.0245 |
| ids.doi | https://doi.org/10.30574/wjaets.2025.15.1.0245 |
| ids.openalex | https://openalex.org/W4409421258 |
| fwci | 0.0 |
| type | article |
| title | AI-driven data integration: Transforming enterprise data pipelines through machine learning |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 738 |
| biblio.first_page | 729 |
| topics[0].id | https://openalex.org/T11891 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.9002000093460083 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1404 |
| topics[0].subfield.display_name | Management Information Systems |
| topics[0].display_name | Big Data and Business Intelligence |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C72634772 |
| concepts[0].level | 2 |
| concepts[0].score | 0.49121373891830444 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q386824 |
| concepts[0].display_name | Data integration |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4683878719806671 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C175309249 |
| concepts[2].level | 2 |
| concepts[2].score | 0.411058247089386 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q725864 |
| concepts[2].display_name | Pipeline transport |
| concepts[3].id | https://openalex.org/C2522767166 |
| concepts[3].level | 1 |
| concepts[3].score | 0.32136639952659607 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[3].display_name | Data science |
| concepts[4].id | https://openalex.org/C127413603 |
| concepts[4].level | 0 |
| concepts[4].score | 0.26821470260620117 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[4].display_name | Engineering |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.19585391879081726 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C78519656 |
| concepts[6].level | 1 |
| concepts[6].score | 0.09747686982154846 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[6].display_name | Mechanical engineering |
| keywords[0].id | https://openalex.org/keywords/data-integration |
| keywords[0].score | 0.49121373891830444 |
| keywords[0].display_name | Data integration |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4683878719806671 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/pipeline-transport |
| keywords[2].score | 0.411058247089386 |
| keywords[2].display_name | Pipeline transport |
| keywords[3].id | https://openalex.org/keywords/data-science |
| keywords[3].score | 0.32136639952659607 |
| keywords[3].display_name | Data science |
| keywords[4].id | https://openalex.org/keywords/engineering |
| keywords[4].score | 0.26821470260620117 |
| keywords[4].display_name | Engineering |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.19585391879081726 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/mechanical-engineering |
| keywords[6].score | 0.09747686982154846 |
| keywords[6].display_name | Mechanical engineering |
| language | en |
| locations[0].id | doi:10.30574/wjaets.2025.15.1.0245 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210239011 |
| locations[0].source.issn | 2582-8266 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2582-8266 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | World Journal of Advanced Engineering Technology and Sciences |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | World Journal of Advanced Engineering Technology and Sciences |
| locations[0].landing_page_url | https://doi.org/10.30574/wjaets.2025.15.1.0245 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5063858151 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6802-6261 |
| authorships[0].author.display_name | N. V. Subba Reddy |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | None Naveen Reddy Singi Reddy |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.30574/wjaets.2025.15.1.0245 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | AI-driven data integration: Transforming enterprise data pipelines through machine learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11891 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.9002000093460083 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1404 |
| primary_topic.subfield.display_name | Management Information Systems |
| primary_topic.display_name | Big Data and Business Intelligence |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W2126703991, https://openalex.org/W2610897791, https://openalex.org/W4366463707, https://openalex.org/W4402024459 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.30574/wjaets.2025.15.1.0245 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210239011 |
| best_oa_location.source.issn | 2582-8266 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2582-8266 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | World Journal of Advanced Engineering Technology and Sciences |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | World Journal of Advanced Engineering Technology and Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.30574/wjaets.2025.15.1.0245 |
| primary_location.id | doi:10.30574/wjaets.2025.15.1.0245 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210239011 |
| primary_location.source.issn | 2582-8266 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2582-8266 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | World Journal of Advanced Engineering Technology and Sciences |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | World Journal of Advanced Engineering Technology and Sciences |
| primary_location.landing_page_url | https://doi.org/10.30574/wjaets.2025.15.1.0245 |
| publication_date | 2025-04-15 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 15, 123 |
| abstract_inverted_index.By | 85 |
| abstract_inverted_index.in | 158 |
| abstract_inverted_index.of | 6 |
| abstract_inverted_index.on | 9, 18, 126 |
| abstract_inverted_index.to | 27, 42, 50, 106, 154, 160 |
| abstract_inverted_index.ETL | 108 |
| abstract_inverted_index.The | 33, 56, 110, 130 |
| abstract_inverted_index.and | 31, 54, 70, 83, 102, 121, 151 |
| abstract_inverted_index.are | 23 |
| abstract_inverted_index.for | 117 |
| abstract_inverted_index.how | 19, 94 |
| abstract_inverted_index.key | 59 |
| abstract_inverted_index.the | 3, 36, 91 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.also | 112 |
| abstract_inverted_index.case | 89 |
| abstract_inverted_index.data | 11, 28, 45, 52, 72, 119, 137, 149, 156 |
| abstract_inverted_index.from | 38 |
| abstract_inverted_index.gain | 140 |
| abstract_inverted_index.that | 47, 75, 133 |
| abstract_inverted_index.with | 14 |
| abstract_inverted_index.focus | 17 |
| abstract_inverted_index.human | 78 |
| abstract_inverted_index.scale | 155 |
| abstract_inverted_index.while | 80 |
| abstract_inverted_index.impact | 5 |
| abstract_inverted_index.manual | 39 |
| abstract_inverted_index.reduce | 77, 99 |
| abstract_inverted_index.schema | 65 |
| abstract_inverted_index.ability | 153 |
| abstract_inverted_index.anomaly | 68 |
| abstract_inverted_index.article | 1, 34, 57, 92, 111, 131 |
| abstract_inverted_index.growing | 161 |
| abstract_inverted_index.machine | 20, 60 |
| abstract_inverted_index.respond | 49 |
| abstract_inverted_index.several | 87 |
| abstract_inverted_index.systems | 97 |
| abstract_inverted_index.through | 144 |
| abstract_inverted_index.accuracy | 82 |
| abstract_inverted_index.adaptive | 118 |
| abstract_inverted_index.advanced | 71 |
| abstract_inverted_index.business | 162 |
| abstract_inverted_index.changing | 51 |
| abstract_inverted_index.cleaning | 73 |
| abstract_inverted_index.compared | 105 |
| abstract_inverted_index.demands. | 163 |
| abstract_inverted_index.emerging | 114 |
| abstract_inverted_index.enabling | 63 |
| abstract_inverted_index.enhanced | 152 |
| abstract_inverted_index.examines | 2 |
| abstract_inverted_index.explores | 35 |
| abstract_inverted_index.improved | 148 |
| abstract_inverted_index.learning | 21, 61 |
| abstract_inverted_index.mapping, | 29 |
| abstract_inverted_index.overhead | 104 |
| abstract_inverted_index.patterns | 53 |
| abstract_inverted_index.provides | 122 |
| abstract_inverted_index.quality, | 150 |
| abstract_inverted_index.response | 159 |
| abstract_inverted_index.studies, | 90 |
| abstract_inverted_index.suggests | 132 |
| abstract_inverted_index.systems. | 129 |
| abstract_inverted_index.AI-driven | 95 |
| abstract_inverted_index.addresses | 113 |
| abstract_inverted_index.analyzing | 86 |
| abstract_inverted_index.automated | 64 |
| abstract_inverted_index.evolution | 37 |
| abstract_inverted_index.improving | 81 |
| abstract_inverted_index.increased | 145 |
| abstract_inverted_index.matching, | 66 |
| abstract_inverted_index.pipelines | 46, 120 |
| abstract_inverted_index.solutions | 139 |
| abstract_inverted_index.AI-powered | 136 |
| abstract_inverted_index.advantages | 143 |
| abstract_inverted_index.algorithms | 22 |
| abstract_inverted_index.approaches | 26 |
| abstract_inverted_index.artificial | 7 |
| abstract_inverted_index.detection, | 69 |
| abstract_inverted_index.enterprise | 10, 88 |
| abstract_inverted_index.frameworks | 116 |
| abstract_inverted_index.identifies | 58 |
| abstract_inverted_index.operations | 157 |
| abstract_inverted_index.particular | 16 |
| abstract_inverted_index.processes, | 13 |
| abstract_inverted_index.processes. | 109 |
| abstract_inverted_index.techniques | 62 |
| abstract_inverted_index.timeframes | 101 |
| abstract_inverted_index.competitive | 142 |
| abstract_inverted_index.efficiency, | 147 |
| abstract_inverted_index.integration | 12, 40, 96, 128, 138 |
| abstract_inverted_index.intelligent | 67 |
| abstract_inverted_index.maintenance | 103 |
| abstract_inverted_index.operational | 146 |
| abstract_inverted_index.perspective | 125 |
| abstract_inverted_index.substantial | 141 |
| abstract_inverted_index.throughput. | 84 |
| abstract_inverted_index.traditional | 25, 107 |
| abstract_inverted_index.capabilities | 74 |
| abstract_inverted_index.demonstrates | 93 |
| abstract_inverted_index.implementing | 135 |
| abstract_inverted_index.intelligence | 8 |
| abstract_inverted_index.intelligent, | 43 |
| abstract_inverted_index.intervention | 79 |
| abstract_inverted_index.maintenance. | 32 |
| abstract_inverted_index.self-healing | 127 |
| abstract_inverted_index.architectural | 115 |
| abstract_inverted_index.automatically | 48 |
| abstract_inverted_index.methodologies | 41 |
| abstract_inverted_index.organizations | 134 |
| abstract_inverted_index.requirements. | 55 |
| abstract_inverted_index.significantly | 76 |
| abstract_inverted_index.substantially | 98 |
| abstract_inverted_index.implementation | 100 |
| abstract_inverted_index.self-adjusting | 44 |
| abstract_inverted_index.transformative | 4 |
| abstract_inverted_index.forward-looking | 124 |
| abstract_inverted_index.revolutionizing | 24 |
| abstract_inverted_index.transformation, | 30 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5063858151 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile.value | 0.16598572 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |