AI-driven epidemic intelligence: the future of outbreak detection and response Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3389/frai.2025.1645467
Epidemic intelligence, the process of detecting, verifying, and analyzing public health threats to enable timely responses, traditionally relies heavily on manual reporting and structured data, often causing delays and coverage gaps. The growing frequency of emerging infectious diseases highlights the urgency for more rapid and accurate surveillance methods. This perspective proposes a forward-looking conceptual framework for AI-driven epidemic intelligence, emphasizing the transformative potential of integrating large language models (LLMs), natural language processing (NLP), and optimization-based resource allocation strategies. While existing AI-driven systems have shown significant capabilities during the COVID-19 pandemic, several challenges remain, including real-time adaptability, multilingual data handling, misinformation, and public health policy alignment. To address these gaps, we propose an integrated, real-time adaptable LLM-based epidemic intelligence system, capable of correlating cross-source data, optimizing healthcare resource allocation, and supporting informed outbreak response. This approach aims to significantly improve early warning capabilities, enhancing forecasting accuracy, and strengthen pandemic preparedness.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/frai.2025.1645467
- https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2025.1645467/pdf
- OA Status
- gold
- Cited By
- 3
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412765880
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412765880Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/frai.2025.1645467Digital Object Identifier
- Title
-
AI-driven epidemic intelligence: the future of outbreak detection and responseWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-30Full publication date if available
- Authors
-
Jasleen Kaur, Zahid A ButtList of authors in order
- Landing page
-
https://doi.org/10.3389/frai.2025.1645467Publisher landing page
- PDF URL
-
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2025.1645467/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2025.1645467/pdfDirect OA link when available
- Concepts
-
Computer science, Preparedness, Transformative learning, Pandemic, Data science, Process (computing), Risk analysis (engineering), Computer security, Infectious disease (medical specialty), Coronavirus disease 2019 (COVID-19), Business, Medicine, Political science, Psychology, Disease, Pedagogy, Pathology, Law, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412765880 |
|---|---|
| doi | https://doi.org/10.3389/frai.2025.1645467 |
| ids.doi | https://doi.org/10.3389/frai.2025.1645467 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40810005 |
| ids.openalex | https://openalex.org/W4412765880 |
| fwci | 13.80405149 |
| type | article |
| title | AI-driven epidemic intelligence: the future of outbreak detection and response |
| biblio.issue | |
| biblio.volume | 8 |
| biblio.last_page | 1645467 |
| biblio.first_page | 1645467 |
| topics[0].id | https://openalex.org/T11819 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2713 |
| topics[0].subfield.display_name | Epidemiology |
| topics[0].display_name | Data-Driven Disease Surveillance |
| topics[1].id | https://openalex.org/T10410 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9692000150680542 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2611 |
| topics[1].subfield.display_name | Modeling and Simulation |
| topics[1].display_name | COVID-19 epidemiological studies |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9674999713897705 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list.value | 1150 |
| apc_list.currency | USD |
| apc_list.value_usd | 1150 |
| apc_paid.value | 1150 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1150 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6092646718025208 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2777042776 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5621746182441711 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4583103 |
| concepts[1].display_name | Preparedness |
| concepts[2].id | https://openalex.org/C70587473 |
| concepts[2].level | 2 |
| concepts[2].score | 0.49930834770202637 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7834111 |
| concepts[2].display_name | Transformative learning |
| concepts[3].id | https://openalex.org/C89623803 |
| concepts[3].level | 5 |
| concepts[3].score | 0.46912264823913574 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12184 |
| concepts[3].display_name | Pandemic |
| concepts[4].id | https://openalex.org/C2522767166 |
| concepts[4].level | 1 |
| concepts[4].score | 0.46008777618408203 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[4].display_name | Data science |
| concepts[5].id | https://openalex.org/C98045186 |
| concepts[5].level | 2 |
| concepts[5].score | 0.41535916924476624 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[5].display_name | Process (computing) |
| concepts[6].id | https://openalex.org/C112930515 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3380335867404938 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q4389547 |
| concepts[6].display_name | Risk analysis (engineering) |
| concepts[7].id | https://openalex.org/C38652104 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3216249942779541 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[7].display_name | Computer security |
| concepts[8].id | https://openalex.org/C524204448 |
| concepts[8].level | 3 |
| concepts[8].score | 0.23431751132011414 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[8].display_name | Infectious disease (medical specialty) |
| concepts[9].id | https://openalex.org/C3008058167 |
| concepts[9].level | 4 |
| concepts[9].score | 0.2249923050403595 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[9].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[10].id | https://openalex.org/C144133560 |
| concepts[10].level | 0 |
| concepts[10].score | 0.17118415236473083 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[10].display_name | Business |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.16639000177383423 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C17744445 |
| concepts[12].level | 0 |
| concepts[12].score | 0.14966687560081482 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[12].display_name | Political science |
| concepts[13].id | https://openalex.org/C15744967 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0993490219116211 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[13].display_name | Psychology |
| concepts[14].id | https://openalex.org/C2779134260 |
| concepts[14].level | 2 |
| concepts[14].score | 0.09555348753929138 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[14].display_name | Disease |
| concepts[15].id | https://openalex.org/C19417346 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7922 |
| concepts[15].display_name | Pedagogy |
| concepts[16].id | https://openalex.org/C142724271 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[16].display_name | Pathology |
| concepts[17].id | https://openalex.org/C199539241 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[17].display_name | Law |
| concepts[18].id | https://openalex.org/C111919701 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[18].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6092646718025208 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/preparedness |
| keywords[1].score | 0.5621746182441711 |
| keywords[1].display_name | Preparedness |
| keywords[2].id | https://openalex.org/keywords/transformative-learning |
| keywords[2].score | 0.49930834770202637 |
| keywords[2].display_name | Transformative learning |
| keywords[3].id | https://openalex.org/keywords/pandemic |
| keywords[3].score | 0.46912264823913574 |
| keywords[3].display_name | Pandemic |
| keywords[4].id | https://openalex.org/keywords/data-science |
| keywords[4].score | 0.46008777618408203 |
| keywords[4].display_name | Data science |
| keywords[5].id | https://openalex.org/keywords/process |
| keywords[5].score | 0.41535916924476624 |
| keywords[5].display_name | Process (computing) |
| keywords[6].id | https://openalex.org/keywords/risk-analysis |
| keywords[6].score | 0.3380335867404938 |
| keywords[6].display_name | Risk analysis (engineering) |
| keywords[7].id | https://openalex.org/keywords/computer-security |
| keywords[7].score | 0.3216249942779541 |
| keywords[7].display_name | Computer security |
| keywords[8].id | https://openalex.org/keywords/infectious-disease |
| keywords[8].score | 0.23431751132011414 |
| keywords[8].display_name | Infectious disease (medical specialty) |
| keywords[9].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[9].score | 0.2249923050403595 |
| keywords[9].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[10].id | https://openalex.org/keywords/business |
| keywords[10].score | 0.17118415236473083 |
| keywords[10].display_name | Business |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.16639000177383423 |
| keywords[11].display_name | Medicine |
| keywords[12].id | https://openalex.org/keywords/political-science |
| keywords[12].score | 0.14966687560081482 |
| keywords[12].display_name | Political science |
| keywords[13].id | https://openalex.org/keywords/psychology |
| keywords[13].score | 0.0993490219116211 |
| keywords[13].display_name | Psychology |
| keywords[14].id | https://openalex.org/keywords/disease |
| keywords[14].score | 0.09555348753929138 |
| keywords[14].display_name | Disease |
| language | en |
| locations[0].id | doi:10.3389/frai.2025.1645467 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210197006 |
| locations[0].source.issn | 2624-8212 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2624-8212 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2025.1645467/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.3389/frai.2025.1645467 |
| locations[1].id | pmid:40810005 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in artificial intelligence |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40810005 |
| locations[2].id | pmh:oai:doaj.org/article:723670aa8d034f64b0c165dfd6c276be |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Frontiers in Artificial Intelligence, Vol 8 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/723670aa8d034f64b0c165dfd6c276be |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12343573 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Front Artif Intell |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12343573 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5101882945 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1243-1452 |
| authorships[0].author.display_name | Jasleen Kaur |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I151746483 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Public Health Sciences, Faculty of Health, University of Waterloo, Waterloo, ON, Canada |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210159778 |
| authorships[0].affiliations[1].raw_affiliation_string | National Research Council Canada, Digital Technologies Research Centre, Ottawa, ON, Canada |
| authorships[0].institutions[0].id | https://openalex.org/I4210159778 |
| authorships[0].institutions[0].ror | https://ror.org/04mte1k06 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210159778 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | National Research Council Canada |
| authorships[0].institutions[1].id | https://openalex.org/I151746483 |
| authorships[0].institutions[1].ror | https://ror.org/01aff2v68 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I151746483 |
| authorships[0].institutions[1].country_code | CA |
| authorships[0].institutions[1].display_name | University of Waterloo |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jasleen Kaur |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | National Research Council Canada, Digital Technologies Research Centre, Ottawa, ON, Canada, School of Public Health Sciences, Faculty of Health, University of Waterloo, Waterloo, ON, Canada |
| authorships[1].author.id | https://openalex.org/A5013553497 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2486-4781 |
| authorships[1].author.display_name | Zahid A Butt |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I151746483 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Public Health Sciences, Faculty of Health, University of Waterloo, Waterloo, ON, Canada |
| authorships[1].institutions[0].id | https://openalex.org/I151746483 |
| authorships[1].institutions[0].ror | https://ror.org/01aff2v68 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I151746483 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | University of Waterloo |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Zahid Ahmad Butt |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Public Health Sciences, Faculty of Health, University of Waterloo, Waterloo, ON, Canada |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2025.1645467/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | AI-driven epidemic intelligence: the future of outbreak detection and response |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11819 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2713 |
| primary_topic.subfield.display_name | Epidemiology |
| primary_topic.display_name | Data-Driven Disease Surveillance |
| related_works | https://openalex.org/W2169196470, https://openalex.org/W3113185420, https://openalex.org/W4237580245, https://openalex.org/W4385368139, https://openalex.org/W4408519084, https://openalex.org/W2906134827, https://openalex.org/W4322745238, https://openalex.org/W4241245680, https://openalex.org/W3124327509, https://openalex.org/W3200688510 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3389/frai.2025.1645467 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210197006 |
| best_oa_location.source.issn | 2624-8212 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2624-8212 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2025.1645467/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.3389/frai.2025.1645467 |
| primary_location.id | doi:10.3389/frai.2025.1645467 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210197006 |
| primary_location.source.issn | 2624-8212 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2624-8212 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2025.1645467/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.3389/frai.2025.1645467 |
| publication_date | 2025-07-30 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2342450313, https://openalex.org/W4309004304, https://openalex.org/W2999612210, https://openalex.org/W2068372477, https://openalex.org/W4367041201, https://openalex.org/W2112257737, https://openalex.org/W2804591035, https://openalex.org/W2559938373, https://openalex.org/W4401722596, https://openalex.org/W4391031145, https://openalex.org/W4410107338, https://openalex.org/W1945721908, https://openalex.org/W4411100483, https://openalex.org/W2134959522, https://openalex.org/W4405986655, https://openalex.org/W2117239687, https://openalex.org/W4401548844, https://openalex.org/W6967005205, https://openalex.org/W3025512159, https://openalex.org/W4408648455, https://openalex.org/W2950656720, https://openalex.org/W2073627497, https://openalex.org/W2068181924, https://openalex.org/W4229069564, https://openalex.org/W4401863416, https://openalex.org/W4361010280, https://openalex.org/W4312082642, https://openalex.org/W2003096040, https://openalex.org/W2276530525, https://openalex.org/W4401583786, https://openalex.org/W3014092698, https://openalex.org/W3158616732, https://openalex.org/W2050716480, https://openalex.org/W2544098428, https://openalex.org/W4297774607, https://openalex.org/W2990072080, https://openalex.org/W2148330046, https://openalex.org/W4406421787, https://openalex.org/W2130094219, https://openalex.org/W4396621042, https://openalex.org/W2081475520 |
| referenced_works_count | 41 |
| abstract_inverted_index.a | 51 |
| abstract_inverted_index.To | 105 |
| abstract_inverted_index.an | 111 |
| abstract_inverted_index.of | 4, 34, 63, 120 |
| abstract_inverted_index.on | 19 |
| abstract_inverted_index.to | 12, 136 |
| abstract_inverted_index.we | 109 |
| abstract_inverted_index.The | 31 |
| abstract_inverted_index.and | 7, 22, 28, 44, 73, 100, 128, 145 |
| abstract_inverted_index.for | 41, 55 |
| abstract_inverted_index.the | 2, 39, 60, 87 |
| abstract_inverted_index.This | 48, 133 |
| abstract_inverted_index.aims | 135 |
| abstract_inverted_index.data | 97 |
| abstract_inverted_index.have | 82 |
| abstract_inverted_index.more | 42 |
| abstract_inverted_index.While | 78 |
| abstract_inverted_index.data, | 24, 123 |
| abstract_inverted_index.early | 139 |
| abstract_inverted_index.gaps, | 108 |
| abstract_inverted_index.gaps. | 30 |
| abstract_inverted_index.large | 65 |
| abstract_inverted_index.often | 25 |
| abstract_inverted_index.rapid | 43 |
| abstract_inverted_index.shown | 83 |
| abstract_inverted_index.these | 107 |
| abstract_inverted_index.(NLP), | 72 |
| abstract_inverted_index.delays | 27 |
| abstract_inverted_index.during | 86 |
| abstract_inverted_index.enable | 13 |
| abstract_inverted_index.health | 10, 102 |
| abstract_inverted_index.manual | 20 |
| abstract_inverted_index.models | 67 |
| abstract_inverted_index.policy | 103 |
| abstract_inverted_index.public | 9, 101 |
| abstract_inverted_index.relies | 17 |
| abstract_inverted_index.timely | 14 |
| abstract_inverted_index.(LLMs), | 68 |
| abstract_inverted_index.address | 106 |
| abstract_inverted_index.capable | 119 |
| abstract_inverted_index.causing | 26 |
| abstract_inverted_index.growing | 32 |
| abstract_inverted_index.heavily | 18 |
| abstract_inverted_index.improve | 138 |
| abstract_inverted_index.natural | 69 |
| abstract_inverted_index.process | 3 |
| abstract_inverted_index.propose | 110 |
| abstract_inverted_index.remain, | 92 |
| abstract_inverted_index.several | 90 |
| abstract_inverted_index.system, | 118 |
| abstract_inverted_index.systems | 81 |
| abstract_inverted_index.threats | 11 |
| abstract_inverted_index.urgency | 40 |
| abstract_inverted_index.warning | 140 |
| abstract_inverted_index.COVID-19 | 88 |
| abstract_inverted_index.Epidemic | 0 |
| abstract_inverted_index.accurate | 45 |
| abstract_inverted_index.approach | 134 |
| abstract_inverted_index.coverage | 29 |
| abstract_inverted_index.diseases | 37 |
| abstract_inverted_index.emerging | 35 |
| abstract_inverted_index.epidemic | 57, 116 |
| abstract_inverted_index.existing | 79 |
| abstract_inverted_index.informed | 130 |
| abstract_inverted_index.language | 66, 70 |
| abstract_inverted_index.methods. | 47 |
| abstract_inverted_index.outbreak | 131 |
| abstract_inverted_index.pandemic | 147 |
| abstract_inverted_index.proposes | 50 |
| abstract_inverted_index.resource | 75, 126 |
| abstract_inverted_index.AI-driven | 56, 80 |
| abstract_inverted_index.LLM-based | 115 |
| abstract_inverted_index.accuracy, | 144 |
| abstract_inverted_index.adaptable | 114 |
| abstract_inverted_index.analyzing | 8 |
| abstract_inverted_index.enhancing | 142 |
| abstract_inverted_index.framework | 54 |
| abstract_inverted_index.frequency | 33 |
| abstract_inverted_index.handling, | 98 |
| abstract_inverted_index.including | 93 |
| abstract_inverted_index.pandemic, | 89 |
| abstract_inverted_index.potential | 62 |
| abstract_inverted_index.real-time | 94, 113 |
| abstract_inverted_index.reporting | 21 |
| abstract_inverted_index.response. | 132 |
| abstract_inverted_index.alignment. | 104 |
| abstract_inverted_index.allocation | 76 |
| abstract_inverted_index.challenges | 91 |
| abstract_inverted_index.conceptual | 53 |
| abstract_inverted_index.detecting, | 5 |
| abstract_inverted_index.healthcare | 125 |
| abstract_inverted_index.highlights | 38 |
| abstract_inverted_index.infectious | 36 |
| abstract_inverted_index.optimizing | 124 |
| abstract_inverted_index.processing | 71 |
| abstract_inverted_index.responses, | 15 |
| abstract_inverted_index.strengthen | 146 |
| abstract_inverted_index.structured | 23 |
| abstract_inverted_index.supporting | 129 |
| abstract_inverted_index.verifying, | 6 |
| abstract_inverted_index.allocation, | 127 |
| abstract_inverted_index.correlating | 121 |
| abstract_inverted_index.emphasizing | 59 |
| abstract_inverted_index.forecasting | 143 |
| abstract_inverted_index.integrated, | 112 |
| abstract_inverted_index.integrating | 64 |
| abstract_inverted_index.perspective | 49 |
| abstract_inverted_index.significant | 84 |
| abstract_inverted_index.strategies. | 77 |
| abstract_inverted_index.capabilities | 85 |
| abstract_inverted_index.cross-source | 122 |
| abstract_inverted_index.intelligence | 117 |
| abstract_inverted_index.multilingual | 96 |
| abstract_inverted_index.surveillance | 46 |
| abstract_inverted_index.adaptability, | 95 |
| abstract_inverted_index.capabilities, | 141 |
| abstract_inverted_index.intelligence, | 1, 58 |
| abstract_inverted_index.preparedness. | 148 |
| abstract_inverted_index.significantly | 137 |
| abstract_inverted_index.traditionally | 16 |
| abstract_inverted_index.transformative | 61 |
| abstract_inverted_index.forward-looking | 52 |
| abstract_inverted_index.misinformation, | 99 |
| abstract_inverted_index.optimization-based | 74 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5013553497 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I151746483 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.7599999904632568 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.96993788 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |