AI-Driven Neuro-Monitoring: Advancing Schizophrenia Detection and Management Through Deep Learning and EEG Analysis Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/fi16110424
Schizophrenia is a complex neuropsychiatric disorder characterized by disruptions in brain connectivity and cognitive functioning. Continuous monitoring of neural activity is essential, as it allows for the detection of subtle changes in brain connectivity patterns, which could provide early warnings of cognitive decline or symptom exacerbation, ultimately facilitating timely therapeutic interventions. This paper proposes a novel approach for detecting schizophrenia-related abnormalities using deep learning (DL) techniques applied to electroencephalogram (EEG) data. Using an openly available EEG dataset on schizophrenia, the focus is on preprocessed event-related potentials (ERPs) from key electrode sites and applied transfer entropy (TE) analysis to quantify the directional flow of information between brain regions. TE matrices were generated to capture neural connectivity patterns, which were then used as input for a hybrid DL model, combining convolutional neural networks (CNNs) and Bidirectional Long Short-Term Memory (BiLSTM) networks. The model achieved a performant accuracy of 99.94% in classifying schizophrenia-related abnormalities, demonstrating its potential for real-time mental health monitoring. The generated TE matrices revealed significant differences in connectivity between the two groups, particularly in frontal and central brain regions, which are critical for cognitive processing. These findings were further validated by correlating the results with EEG data obtained from the Muse 2 headband, emphasizing the potential for portable, non-invasive monitoring of schizophrenia in real-world settings. The final model, integrated into the NeuroPredict platform, offers a scalable solution for continuous mental health monitoring. By incorporating EEG data, heart rate, sleep patterns, and environmental metrics, NeuroPredict facilitates early detection and personalized interventions for schizophrenia patients.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/fi16110424
- OA Status
- gold
- Cited By
- 7
- References
- 63
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404501128
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404501128Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/fi16110424Digital Object Identifier
- Title
-
AI-Driven Neuro-Monitoring: Advancing Schizophrenia Detection and Management Through Deep Learning and EEG AnalysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-16Full publication date if available
- Authors
-
Elena-Anca Paraschiv, Lidia Băjenaru, Cristian Petrache, Ovidiu Bica, Dan V. NicolauList of authors in order
- Landing page
-
https://doi.org/10.3390/fi16110424Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/fi16110424Direct OA link when available
- Concepts
-
Computer science, Electroencephalography, Deep learning, Schizophrenia (object-oriented programming), Artificial intelligence, Machine learning, Data science, Neuroscience, Psychology, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7Per-year citation counts (last 5 years)
- References (count)
-
63Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404501128 |
|---|---|
| doi | https://doi.org/10.3390/fi16110424 |
| ids.doi | https://doi.org/10.3390/fi16110424 |
| ids.openalex | https://openalex.org/W4404501128 |
| fwci | 4.91960394 |
| type | article |
| title | AI-Driven Neuro-Monitoring: Advancing Schizophrenia Detection and Management Through Deep Learning and EEG Analysis |
| biblio.issue | 11 |
| biblio.volume | 16 |
| biblio.last_page | 424 |
| biblio.first_page | 424 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T10241 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9973999857902527 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | Functional Brain Connectivity Studies |
| topics[2].id | https://openalex.org/T10667 |
| topics[2].field.id | https://openalex.org/fields/32 |
| topics[2].field.display_name | Psychology |
| topics[2].score | 0.992900013923645 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3205 |
| topics[2].subfield.display_name | Experimental and Cognitive Psychology |
| topics[2].display_name | Emotion and Mood Recognition |
| is_xpac | False |
| apc_list.value | 1400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1515 |
| apc_paid.value | 1400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1515 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.848209798336029 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C522805319 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7422374486923218 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[1].display_name | Electroencephalography |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.650700569152832 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C2776412080 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5782293081283569 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7431605 |
| concepts[3].display_name | Schizophrenia (object-oriented programming) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5406057834625244 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.35766831040382385 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C2522767166 |
| concepts[6].level | 1 |
| concepts[6].score | 0.34754687547683716 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[6].display_name | Data science |
| concepts[7].id | https://openalex.org/C169760540 |
| concepts[7].level | 1 |
| concepts[7].score | 0.1949281394481659 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[7].display_name | Neuroscience |
| concepts[8].id | https://openalex.org/C15744967 |
| concepts[8].level | 0 |
| concepts[8].score | 0.10056206583976746 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[8].display_name | Psychology |
| concepts[9].id | https://openalex.org/C199360897 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[9].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.848209798336029 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/electroencephalography |
| keywords[1].score | 0.7422374486923218 |
| keywords[1].display_name | Electroencephalography |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.650700569152832 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/schizophrenia |
| keywords[3].score | 0.5782293081283569 |
| keywords[3].display_name | Schizophrenia (object-oriented programming) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5406057834625244 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.35766831040382385 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/data-science |
| keywords[6].score | 0.34754687547683716 |
| keywords[6].display_name | Data science |
| keywords[7].id | https://openalex.org/keywords/neuroscience |
| keywords[7].score | 0.1949281394481659 |
| keywords[7].display_name | Neuroscience |
| keywords[8].id | https://openalex.org/keywords/psychology |
| keywords[8].score | 0.10056206583976746 |
| keywords[8].display_name | Psychology |
| language | en |
| locations[0].id | doi:10.3390/fi16110424 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S34838331 |
| locations[0].source.issn | 1999-5903 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1999-5903 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Future Internet |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Future Internet |
| locations[0].landing_page_url | https://doi.org/10.3390/fi16110424 |
| locations[1].id | pmh:oai:doaj.org/article:25baf5f2e2f549238b55ce5b637bef62 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Future Internet, Vol 16, Iss 11, p 424 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/25baf5f2e2f549238b55ce5b637bef62 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5037134454 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Elena-Anca Paraschiv |
| authorships[0].countries | RO |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I61641377 |
| authorships[0].affiliations[0].raw_affiliation_string | Doctoral School of Electronics, Telecommunications & Information Technology, National University of Science and Technology POLITEHNICA, 060042 Bucharest, Romania |
| authorships[0].institutions[0].id | https://openalex.org/I61641377 |
| authorships[0].institutions[0].ror | https://ror.org/0558j5q12 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I61641377 |
| authorships[0].institutions[0].country_code | RO |
| authorships[0].institutions[0].display_name | Universitatea Națională de Știință și Tehnologie Politehnica București |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Elena-Anca Paraschiv |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Doctoral School of Electronics, Telecommunications & Information Technology, National University of Science and Technology POLITEHNICA, 060042 Bucharest, Romania |
| authorships[1].author.id | https://openalex.org/A5085603040 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1800-3897 |
| authorships[1].author.display_name | Lidia Băjenaru |
| authorships[1].countries | RO |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I61641377 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, Faculty of Automatic Control and Computers, National University of Science and Technology POLITEHNICA, 060042 Bucharest, Romania |
| authorships[1].institutions[0].id | https://openalex.org/I61641377 |
| authorships[1].institutions[0].ror | https://ror.org/0558j5q12 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I61641377 |
| authorships[1].institutions[0].country_code | RO |
| authorships[1].institutions[0].display_name | Universitatea Națională de Știință și Tehnologie Politehnica București |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lidia Băjenaru |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Computer Science, Faculty of Automatic Control and Computers, National University of Science and Technology POLITEHNICA, 060042 Bucharest, Romania |
| authorships[2].author.id | https://openalex.org/A5043727854 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Cristian Petrache |
| authorships[2].countries | RO |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210114681 |
| authorships[2].affiliations[0].raw_affiliation_string | National Institute for Research and Development in Informatics—ICI Bucharest, 011455 Bucharest, Romania |
| authorships[2].institutions[0].id | https://openalex.org/I4210114681 |
| authorships[2].institutions[0].ror | https://ror.org/028rq5v79 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210114681 |
| authorships[2].institutions[0].country_code | RO |
| authorships[2].institutions[0].display_name | National Institute for Research and Development in Informatics - ICI Bucharest |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Cristian Petrache |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National Institute for Research and Development in Informatics—ICI Bucharest, 011455 Bucharest, Romania |
| authorships[3].author.id | https://openalex.org/A5063160646 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Ovidiu Bica |
| authorships[3].countries | RO |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210114681 |
| authorships[3].affiliations[0].raw_affiliation_string | National Institute for Research and Development in Informatics—ICI Bucharest, 011455 Bucharest, Romania |
| authorships[3].institutions[0].id | https://openalex.org/I4210114681 |
| authorships[3].institutions[0].ror | https://ror.org/028rq5v79 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210114681 |
| authorships[3].institutions[0].country_code | RO |
| authorships[3].institutions[0].display_name | National Institute for Research and Development in Informatics - ICI Bucharest |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ovidiu Bica |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | National Institute for Research and Development in Informatics—ICI Bucharest, 011455 Bucharest, Romania |
| authorships[4].author.id | https://openalex.org/A5043698287 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9956-0600 |
| authorships[4].author.display_name | Dan V. Nicolau |
| authorships[4].countries | RO |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210114681 |
| authorships[4].affiliations[0].raw_affiliation_string | National Institute for Research and Development in Informatics—ICI Bucharest, 011455 Bucharest, Romania |
| authorships[4].institutions[0].id | https://openalex.org/I4210114681 |
| authorships[4].institutions[0].ror | https://ror.org/028rq5v79 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210114681 |
| authorships[4].institutions[0].country_code | RO |
| authorships[4].institutions[0].display_name | National Institute for Research and Development in Informatics - ICI Bucharest |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Dragoș-Nicolae Nicolau |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | National Institute for Research and Development in Informatics—ICI Bucharest, 011455 Bucharest, Romania |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/fi16110424 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | AI-Driven Neuro-Monitoring: Advancing Schizophrenia Detection and Management Through Deep Learning and EEG Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W2922348724, https://openalex.org/W200322357, https://openalex.org/W2130428257, https://openalex.org/W4308951944, https://openalex.org/W2057366091, https://openalex.org/W4312960290, https://openalex.org/W2049513647, https://openalex.org/W2988848585, https://openalex.org/W4233722919, https://openalex.org/W4380075502 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/fi16110424 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S34838331 |
| best_oa_location.source.issn | 1999-5903 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1999-5903 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Future Internet |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Future Internet |
| best_oa_location.landing_page_url | https://doi.org/10.3390/fi16110424 |
| primary_location.id | doi:10.3390/fi16110424 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S34838331 |
| primary_location.source.issn | 1999-5903 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1999-5903 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Future Internet |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Future Internet |
| primary_location.landing_page_url | https://doi.org/10.3390/fi16110424 |
| publication_date | 2024-11-16 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4309166845, https://openalex.org/W3096063139, https://openalex.org/W4313034088, https://openalex.org/W3097988192, https://openalex.org/W3215972097, https://openalex.org/W2998123861, https://openalex.org/W4385669218, https://openalex.org/W3211758630, https://openalex.org/W4385432598, https://openalex.org/W3100782900, https://openalex.org/W3004204370, https://openalex.org/W3189219008, https://openalex.org/W3189853208, https://openalex.org/W4207009657, https://openalex.org/W4223622676, https://openalex.org/W4286005530, https://openalex.org/W2316445982, https://openalex.org/W4388969029, https://openalex.org/W3084493059, https://openalex.org/W3120799265, https://openalex.org/W2985355520, https://openalex.org/W3115781050, https://openalex.org/W4389201797, https://openalex.org/W4205431128, https://openalex.org/W4313133615, https://openalex.org/W3096288315, https://openalex.org/W1975793762, https://openalex.org/W3045066320, https://openalex.org/W4388938015, https://openalex.org/W3161486589, https://openalex.org/W3048636829, https://openalex.org/W3121585761, https://openalex.org/W4302363068, https://openalex.org/W2572492807, https://openalex.org/W2952429584, https://openalex.org/W3111758161, https://openalex.org/W3142519525, https://openalex.org/W3094142683, https://openalex.org/W4366590781, https://openalex.org/W3025944672, https://openalex.org/W6856797861, https://openalex.org/W3153249525, https://openalex.org/W4213306506, https://openalex.org/W4322742854, https://openalex.org/W2923541661, https://openalex.org/W3033626851, https://openalex.org/W6790760347, https://openalex.org/W4295870301, https://openalex.org/W3173933486, https://openalex.org/W4211182380, https://openalex.org/W4320716789, https://openalex.org/W6601551111, https://openalex.org/W2150991704, https://openalex.org/W4296896551, https://openalex.org/W4353021587, https://openalex.org/W4319159924, https://openalex.org/W2808759103, https://openalex.org/W4385067001, https://openalex.org/W2274180408, https://openalex.org/W4392660436, https://openalex.org/W3127924821, https://openalex.org/W38368878, https://openalex.org/W4387228796 |
| referenced_works_count | 63 |
| abstract_inverted_index.2 | 201 |
| abstract_inverted_index.a | 2, 54, 123, 142, 224 |
| abstract_inverted_index.By | 232 |
| abstract_inverted_index.DL | 125 |
| abstract_inverted_index.TE | 107, 161 |
| abstract_inverted_index.an | 72 |
| abstract_inverted_index.as | 22, 120 |
| abstract_inverted_index.by | 7, 190 |
| abstract_inverted_index.in | 9, 31, 147, 166, 173, 212 |
| abstract_inverted_index.is | 1, 20, 81 |
| abstract_inverted_index.it | 23 |
| abstract_inverted_index.of | 17, 28, 40, 102, 145, 210 |
| abstract_inverted_index.on | 77, 82 |
| abstract_inverted_index.or | 43 |
| abstract_inverted_index.to | 67, 97, 111 |
| abstract_inverted_index.EEG | 75, 195, 234 |
| abstract_inverted_index.The | 139, 159, 215 |
| abstract_inverted_index.and | 12, 91, 132, 175, 240, 247 |
| abstract_inverted_index.are | 180 |
| abstract_inverted_index.for | 25, 57, 122, 154, 182, 206, 227, 250 |
| abstract_inverted_index.its | 152 |
| abstract_inverted_index.key | 88 |
| abstract_inverted_index.the | 26, 79, 99, 169, 192, 199, 204, 220 |
| abstract_inverted_index.two | 170 |
| abstract_inverted_index.(DL) | 64 |
| abstract_inverted_index.(TE) | 95 |
| abstract_inverted_index.Long | 134 |
| abstract_inverted_index.Muse | 200 |
| abstract_inverted_index.This | 51 |
| abstract_inverted_index.data | 196 |
| abstract_inverted_index.deep | 62 |
| abstract_inverted_index.flow | 101 |
| abstract_inverted_index.from | 87, 198 |
| abstract_inverted_index.into | 219 |
| abstract_inverted_index.then | 118 |
| abstract_inverted_index.used | 119 |
| abstract_inverted_index.were | 109, 117, 187 |
| abstract_inverted_index.with | 194 |
| abstract_inverted_index.(EEG) | 69 |
| abstract_inverted_index.These | 185 |
| abstract_inverted_index.Using | 71 |
| abstract_inverted_index.brain | 10, 32, 105, 177 |
| abstract_inverted_index.could | 36 |
| abstract_inverted_index.data, | 235 |
| abstract_inverted_index.data. | 70 |
| abstract_inverted_index.early | 38, 245 |
| abstract_inverted_index.final | 216 |
| abstract_inverted_index.focus | 80 |
| abstract_inverted_index.heart | 236 |
| abstract_inverted_index.input | 121 |
| abstract_inverted_index.model | 140 |
| abstract_inverted_index.novel | 55 |
| abstract_inverted_index.paper | 52 |
| abstract_inverted_index.rate, | 237 |
| abstract_inverted_index.sites | 90 |
| abstract_inverted_index.sleep | 238 |
| abstract_inverted_index.using | 61 |
| abstract_inverted_index.which | 35, 116, 179 |
| abstract_inverted_index.(CNNs) | 131 |
| abstract_inverted_index.(ERPs) | 86 |
| abstract_inverted_index.99.94% | 146 |
| abstract_inverted_index.Memory | 136 |
| abstract_inverted_index.allows | 24 |
| abstract_inverted_index.health | 157, 230 |
| abstract_inverted_index.hybrid | 124 |
| abstract_inverted_index.mental | 156, 229 |
| abstract_inverted_index.model, | 126, 217 |
| abstract_inverted_index.neural | 18, 113, 129 |
| abstract_inverted_index.offers | 223 |
| abstract_inverted_index.openly | 73 |
| abstract_inverted_index.subtle | 29 |
| abstract_inverted_index.timely | 48 |
| abstract_inverted_index.applied | 66, 92 |
| abstract_inverted_index.between | 104, 168 |
| abstract_inverted_index.capture | 112 |
| abstract_inverted_index.central | 176 |
| abstract_inverted_index.changes | 30 |
| abstract_inverted_index.complex | 3 |
| abstract_inverted_index.dataset | 76 |
| abstract_inverted_index.decline | 42 |
| abstract_inverted_index.entropy | 94 |
| abstract_inverted_index.frontal | 174 |
| abstract_inverted_index.further | 188 |
| abstract_inverted_index.groups, | 171 |
| abstract_inverted_index.provide | 37 |
| abstract_inverted_index.results | 193 |
| abstract_inverted_index.symptom | 44 |
| abstract_inverted_index.(BiLSTM) | 137 |
| abstract_inverted_index.accuracy | 144 |
| abstract_inverted_index.achieved | 141 |
| abstract_inverted_index.activity | 19 |
| abstract_inverted_index.analysis | 96 |
| abstract_inverted_index.approach | 56 |
| abstract_inverted_index.critical | 181 |
| abstract_inverted_index.disorder | 5 |
| abstract_inverted_index.findings | 186 |
| abstract_inverted_index.learning | 63 |
| abstract_inverted_index.matrices | 108, 162 |
| abstract_inverted_index.metrics, | 242 |
| abstract_inverted_index.networks | 130 |
| abstract_inverted_index.obtained | 197 |
| abstract_inverted_index.proposes | 53 |
| abstract_inverted_index.quantify | 98 |
| abstract_inverted_index.regions, | 178 |
| abstract_inverted_index.regions. | 106 |
| abstract_inverted_index.revealed | 163 |
| abstract_inverted_index.scalable | 225 |
| abstract_inverted_index.solution | 226 |
| abstract_inverted_index.transfer | 93 |
| abstract_inverted_index.warnings | 39 |
| abstract_inverted_index.available | 74 |
| abstract_inverted_index.cognitive | 13, 41, 183 |
| abstract_inverted_index.combining | 127 |
| abstract_inverted_index.detecting | 58 |
| abstract_inverted_index.detection | 27, 246 |
| abstract_inverted_index.electrode | 89 |
| abstract_inverted_index.generated | 110, 160 |
| abstract_inverted_index.headband, | 202 |
| abstract_inverted_index.networks. | 138 |
| abstract_inverted_index.patients. | 252 |
| abstract_inverted_index.patterns, | 34, 115, 239 |
| abstract_inverted_index.platform, | 222 |
| abstract_inverted_index.portable, | 207 |
| abstract_inverted_index.potential | 153, 205 |
| abstract_inverted_index.real-time | 155 |
| abstract_inverted_index.settings. | 214 |
| abstract_inverted_index.validated | 189 |
| abstract_inverted_index.Continuous | 15 |
| abstract_inverted_index.Short-Term | 135 |
| abstract_inverted_index.continuous | 228 |
| abstract_inverted_index.essential, | 21 |
| abstract_inverted_index.integrated | 218 |
| abstract_inverted_index.monitoring | 16, 209 |
| abstract_inverted_index.performant | 143 |
| abstract_inverted_index.potentials | 85 |
| abstract_inverted_index.real-world | 213 |
| abstract_inverted_index.techniques | 65 |
| abstract_inverted_index.ultimately | 46 |
| abstract_inverted_index.classifying | 148 |
| abstract_inverted_index.correlating | 191 |
| abstract_inverted_index.differences | 165 |
| abstract_inverted_index.directional | 100 |
| abstract_inverted_index.disruptions | 8 |
| abstract_inverted_index.emphasizing | 203 |
| abstract_inverted_index.facilitates | 244 |
| abstract_inverted_index.information | 103 |
| abstract_inverted_index.monitoring. | 158, 231 |
| abstract_inverted_index.processing. | 184 |
| abstract_inverted_index.significant | 164 |
| abstract_inverted_index.therapeutic | 49 |
| abstract_inverted_index.NeuroPredict | 221, 243 |
| abstract_inverted_index.connectivity | 11, 33, 114, 167 |
| abstract_inverted_index.facilitating | 47 |
| abstract_inverted_index.functioning. | 14 |
| abstract_inverted_index.non-invasive | 208 |
| abstract_inverted_index.particularly | 172 |
| abstract_inverted_index.personalized | 248 |
| abstract_inverted_index.preprocessed | 83 |
| abstract_inverted_index.Bidirectional | 133 |
| abstract_inverted_index.Schizophrenia | 0 |
| abstract_inverted_index.abnormalities | 60 |
| abstract_inverted_index.characterized | 6 |
| abstract_inverted_index.convolutional | 128 |
| abstract_inverted_index.demonstrating | 151 |
| abstract_inverted_index.environmental | 241 |
| abstract_inverted_index.event-related | 84 |
| abstract_inverted_index.exacerbation, | 45 |
| abstract_inverted_index.incorporating | 233 |
| abstract_inverted_index.interventions | 249 |
| abstract_inverted_index.schizophrenia | 211, 251 |
| abstract_inverted_index.abnormalities, | 150 |
| abstract_inverted_index.interventions. | 50 |
| abstract_inverted_index.schizophrenia, | 78 |
| abstract_inverted_index.neuropsychiatric | 4 |
| abstract_inverted_index.electroencephalogram | 68 |
| abstract_inverted_index.schizophrenia-related | 59, 149 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5037134454, https://openalex.org/A5085603040 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I61641377 |
| citation_normalized_percentile.value | 0.92726676 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |