AI Trainer: Autoencoder Based Approach for Squat Analysis and Correction Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1109/access.2023.3316009
Artificial intelligence and computer vision have widespread applications in workout analysis. It has been extensively used in sports and the athlete industry to identify errors and improve performance. Furthermore, these methods prevent injuries caused by a lack of instructors or costly infrastructure. One such exercise is the squat, which is a movement in which a standing person descends to a posture with their torso vertical and their knees firmly bent, then returns to their original upright position. Each person’s squat is distinct, with varying limb lengths causing their form to change when observed. It has been observed that the mobility of various joints and muscular strength have a role in this. A squat improves the user by increasing overall leg strength, strengthening knee and hip joints, and lowering the risk of heart disease due to cardiovascular development. This paper presents a method for classifying squat types and recommending the right squat version. This study uses MediaPipe and a deep learning-based technique to decide if squatting is good or bad. A stacked Bidirectional Gated Recurrent Unit (Bi-GRU) model with an attention layer is proposed to consistently and fairly assess each user, categorizing squats into seven classes. This stacked Bi-GRU model with an attention unit is then compared to other cutting-edge models, both with and without the attention layer. The model outperforms other models by attaining an accuracy of 94% and is demonstrated to work the best and most consistently for our dataset. Furthermore, the individual executing the incorrect squat is corrected to the best of their ability, depending on their performance and body proportions, by providing the correct form.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2023.3316009
- https://ieeexplore.ieee.org/ielx7/6287639/6514899/10254650.pdf
- OA Status
- gold
- Cited By
- 24
- References
- 59
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386825079
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386825079Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2023.3316009Digital Object Identifier
- Title
-
AI Trainer: Autoencoder Based Approach for Squat Analysis and CorrectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Mukundan Chariar, Shreyas Suresh Rao, Aryan Irani, Shilpa Suresh, C S AshaList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2023.3316009Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10254650.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10254650.pdfDirect OA link when available
- Concepts
-
Squat, Squatting position, Trainer, Computer science, Torso, Artificial intelligence, Autoencoder, Enhanced Data Rates for GSM Evolution, Machine learning, Physical medicine and rehabilitation, Simulation, Deep learning, Physical therapy, Medicine, Programming language, AnatomyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
24Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 12, 2024: 11, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
59Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386825079 |
|---|---|
| doi | https://doi.org/10.1109/access.2023.3316009 |
| ids.doi | https://doi.org/10.1109/access.2023.3316009 |
| ids.openalex | https://openalex.org/W4386825079 |
| fwci | 4.36724016 |
| type | article |
| title | AI Trainer: Autoencoder Based Approach for Squat Analysis and Correction |
| biblio.issue | |
| biblio.volume | 11 |
| biblio.last_page | 107149 |
| biblio.first_page | 107135 |
| topics[0].id | https://openalex.org/T10812 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9970999956130981 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Human Pose and Action Recognition |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9929999709129333 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T10157 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9635000228881836 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2732 |
| topics[2].subfield.display_name | Orthopedics and Sports Medicine |
| topics[2].display_name | Sports Performance and Training |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C2778820510 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9522336721420288 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1755746 |
| concepts[0].display_name | Squat |
| concepts[1].id | https://openalex.org/C119971845 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7787878513336182 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2540134 |
| concepts[1].display_name | Squatting position |
| concepts[2].id | https://openalex.org/C2780463512 |
| concepts[2].level | 2 |
| concepts[2].score | 0.694602370262146 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q15122700 |
| concepts[2].display_name | Trainer |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6888673305511475 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C523889960 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6380863785743713 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q160695 |
| concepts[4].display_name | Torso |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5305681228637695 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C101738243 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4914511442184448 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[6].display_name | Autoencoder |
| concepts[7].id | https://openalex.org/C162307627 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4485463500022888 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q204833 |
| concepts[7].display_name | Enhanced Data Rates for GSM Evolution |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.369027704000473 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C99508421 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3686269521713257 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2678675 |
| concepts[9].display_name | Physical medicine and rehabilitation |
| concepts[10].id | https://openalex.org/C44154836 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3660176992416382 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q45045 |
| concepts[10].display_name | Simulation |
| concepts[11].id | https://openalex.org/C108583219 |
| concepts[11].level | 2 |
| concepts[11].score | 0.27162420749664307 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[11].display_name | Deep learning |
| concepts[12].id | https://openalex.org/C1862650 |
| concepts[12].level | 1 |
| concepts[12].score | 0.24556279182434082 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q186005 |
| concepts[12].display_name | Physical therapy |
| concepts[13].id | https://openalex.org/C71924100 |
| concepts[13].level | 0 |
| concepts[13].score | 0.14173197746276855 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[13].display_name | Medicine |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| concepts[15].id | https://openalex.org/C105702510 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q514 |
| concepts[15].display_name | Anatomy |
| keywords[0].id | https://openalex.org/keywords/squat |
| keywords[0].score | 0.9522336721420288 |
| keywords[0].display_name | Squat |
| keywords[1].id | https://openalex.org/keywords/squatting-position |
| keywords[1].score | 0.7787878513336182 |
| keywords[1].display_name | Squatting position |
| keywords[2].id | https://openalex.org/keywords/trainer |
| keywords[2].score | 0.694602370262146 |
| keywords[2].display_name | Trainer |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6888673305511475 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/torso |
| keywords[4].score | 0.6380863785743713 |
| keywords[4].display_name | Torso |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5305681228637695 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/autoencoder |
| keywords[6].score | 0.4914511442184448 |
| keywords[6].display_name | Autoencoder |
| keywords[7].id | https://openalex.org/keywords/enhanced-data-rates-for-gsm-evolution |
| keywords[7].score | 0.4485463500022888 |
| keywords[7].display_name | Enhanced Data Rates for GSM Evolution |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.369027704000473 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/physical-medicine-and-rehabilitation |
| keywords[9].score | 0.3686269521713257 |
| keywords[9].display_name | Physical medicine and rehabilitation |
| keywords[10].id | https://openalex.org/keywords/simulation |
| keywords[10].score | 0.3660176992416382 |
| keywords[10].display_name | Simulation |
| keywords[11].id | https://openalex.org/keywords/deep-learning |
| keywords[11].score | 0.27162420749664307 |
| keywords[11].display_name | Deep learning |
| keywords[12].id | https://openalex.org/keywords/physical-therapy |
| keywords[12].score | 0.24556279182434082 |
| keywords[12].display_name | Physical therapy |
| keywords[13].id | https://openalex.org/keywords/medicine |
| keywords[13].score | 0.14173197746276855 |
| keywords[13].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.1109/access.2023.3316009 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10254650.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2023.3316009 |
| locations[1].id | pmh:oai:doaj.org/article:329d3aa3216b492ca46e1e31bcbe5547 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 11, Pp 107135-107149 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/329d3aa3216b492ca46e1e31bcbe5547 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5092893994 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Mukundan Chariar |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I164861460 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India |
| authorships[0].institutions[0].id | https://openalex.org/I164861460 |
| authorships[0].institutions[0].ror | https://ror.org/02xzytt36 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I164861460 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Manipal Academy of Higher Education |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mukundan Chariar |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India |
| authorships[1].author.id | https://openalex.org/A5023496991 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2191-1754 |
| authorships[1].author.display_name | Shreyas Suresh Rao |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I164861460 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India |
| authorships[1].institutions[0].id | https://openalex.org/I164861460 |
| authorships[1].institutions[0].ror | https://ror.org/02xzytt36 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I164861460 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Manipal Academy of Higher Education |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shreyas Rao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India |
| authorships[2].author.id | https://openalex.org/A5108864269 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Aryan Irani |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I164861460 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India |
| authorships[2].institutions[0].id | https://openalex.org/I164861460 |
| authorships[2].institutions[0].ror | https://ror.org/02xzytt36 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I164861460 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Manipal Academy of Higher Education |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Aryan Irani |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India |
| authorships[3].author.id | https://openalex.org/A5000528488 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1796-5995 |
| authorships[3].author.display_name | Shilpa Suresh |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I164861460 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India |
| authorships[3].institutions[0].id | https://openalex.org/I164861460 |
| authorships[3].institutions[0].ror | https://ror.org/02xzytt36 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I164861460 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Manipal Academy of Higher Education |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shilpa Suresh |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India |
| authorships[4].author.id | https://openalex.org/A5047899011 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | C S Asha |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I164861460 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India |
| authorships[4].institutions[0].id | https://openalex.org/I164861460 |
| authorships[4].institutions[0].ror | https://ror.org/02xzytt36 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I164861460 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Manipal Academy of Higher Education |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | C S Asha |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10254650.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | AI Trainer: Autoencoder Based Approach for Squat Analysis and Correction |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10812 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9970999956130981 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Human Pose and Action Recognition |
| related_works | https://openalex.org/W3111669225, https://openalex.org/W1969283265, https://openalex.org/W3011651458, https://openalex.org/W2464106877, https://openalex.org/W2938393902, https://openalex.org/W4287576374, https://openalex.org/W2976015960, https://openalex.org/W2146116049, https://openalex.org/W4385488366, https://openalex.org/W2229788040 |
| cited_by_count | 24 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 12 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 11 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2023.3316009 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10254650.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2023.3316009 |
| primary_location.id | doi:10.1109/access.2023.3316009 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10254650.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2023.3316009 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2510904606, https://openalex.org/W6766313882, https://openalex.org/W2001965006, https://openalex.org/W3135214602, https://openalex.org/W1767105723, https://openalex.org/W6841561591, https://openalex.org/W3082542464, https://openalex.org/W4210675250, https://openalex.org/W2065564506, https://openalex.org/W3194086543, https://openalex.org/W2963734962, https://openalex.org/W4285503502, https://openalex.org/W1669579091, https://openalex.org/W3040336838, https://openalex.org/W2295038166, https://openalex.org/W6661639948, https://openalex.org/W2744557704, https://openalex.org/W3130572049, https://openalex.org/W2979952234, https://openalex.org/W2626990868, https://openalex.org/W4316659586, https://openalex.org/W4363649058, https://openalex.org/W2916798096, https://openalex.org/W2559085405, https://openalex.org/W2963402313, https://openalex.org/W290547279, https://openalex.org/W3101560663, https://openalex.org/W4321373310, https://openalex.org/W1971750883, https://openalex.org/W4294685871, https://openalex.org/W3003157920, https://openalex.org/W2962730651, https://openalex.org/W2113325037, https://openalex.org/W2963995996, https://openalex.org/W4309456548, https://openalex.org/W1808721984, https://openalex.org/W2064675550, https://openalex.org/W4382135868, https://openalex.org/W1902237438, https://openalex.org/W2941239341, https://openalex.org/W4220967025, https://openalex.org/W2157331557, https://openalex.org/W1983364832, https://openalex.org/W4312481210, https://openalex.org/W3026090589, https://openalex.org/W2789641460, https://openalex.org/W3208624098, https://openalex.org/W2928879480, https://openalex.org/W2012732880, https://openalex.org/W2510185399, https://openalex.org/W3036066034, https://openalex.org/W2739179646, https://openalex.org/W3023347592, https://openalex.org/W2806246988, https://openalex.org/W2044409493, https://openalex.org/W3123784868, https://openalex.org/W2963474564, https://openalex.org/W4394940620, https://openalex.org/W4289865988 |
| referenced_works_count | 59 |
| abstract_inverted_index.A | 111, 169 |
| abstract_inverted_index.a | 35, 50, 54, 59, 107, 140, 157 |
| abstract_inverted_index.It | 11, 93 |
| abstract_inverted_index.an | 178, 200, 224 |
| abstract_inverted_index.by | 34, 116, 222, 263 |
| abstract_inverted_index.if | 163 |
| abstract_inverted_index.in | 8, 16, 52, 109 |
| abstract_inverted_index.is | 45, 49, 80, 165, 181, 203, 229, 248 |
| abstract_inverted_index.of | 37, 100, 130, 226, 253 |
| abstract_inverted_index.on | 257 |
| abstract_inverted_index.or | 39, 167 |
| abstract_inverted_index.to | 22, 58, 72, 89, 134, 161, 183, 206, 231, 250 |
| abstract_inverted_index.One | 42 |
| abstract_inverted_index.The | 217 |
| abstract_inverted_index.and | 2, 18, 25, 65, 103, 123, 126, 146, 156, 185, 212, 228, 235, 260 |
| abstract_inverted_index.due | 133 |
| abstract_inverted_index.for | 142, 238 |
| abstract_inverted_index.has | 12, 94 |
| abstract_inverted_index.hip | 124 |
| abstract_inverted_index.leg | 119 |
| abstract_inverted_index.our | 239 |
| abstract_inverted_index.the | 19, 46, 98, 114, 128, 148, 214, 233, 242, 245, 251, 265 |
| abstract_inverted_index.Each | 77 |
| abstract_inverted_index.This | 137, 152, 195 |
| abstract_inverted_index.Unit | 174 |
| abstract_inverted_index.bad. | 168 |
| abstract_inverted_index.been | 13, 95 |
| abstract_inverted_index.best | 234, 252 |
| abstract_inverted_index.body | 261 |
| abstract_inverted_index.both | 210 |
| abstract_inverted_index.deep | 158 |
| abstract_inverted_index.each | 188 |
| abstract_inverted_index.form | 88 |
| abstract_inverted_index.good | 166 |
| abstract_inverted_index.have | 5, 106 |
| abstract_inverted_index.into | 192 |
| abstract_inverted_index.knee | 122 |
| abstract_inverted_index.lack | 36 |
| abstract_inverted_index.limb | 84 |
| abstract_inverted_index.most | 236 |
| abstract_inverted_index.risk | 129 |
| abstract_inverted_index.role | 108 |
| abstract_inverted_index.such | 43 |
| abstract_inverted_index.that | 97 |
| abstract_inverted_index.then | 70, 204 |
| abstract_inverted_index.unit | 202 |
| abstract_inverted_index.used | 15 |
| abstract_inverted_index.user | 115 |
| abstract_inverted_index.uses | 154 |
| abstract_inverted_index.when | 91 |
| abstract_inverted_index.with | 61, 82, 177, 199, 211 |
| abstract_inverted_index.work | 232 |
| abstract_inverted_index.Gated | 172 |
| abstract_inverted_index.bent, | 69 |
| abstract_inverted_index.form. | 267 |
| abstract_inverted_index.heart | 131 |
| abstract_inverted_index.knees | 67 |
| abstract_inverted_index.layer | 180 |
| abstract_inverted_index.model | 176, 198, 218 |
| abstract_inverted_index.other | 207, 220 |
| abstract_inverted_index.paper | 138 |
| abstract_inverted_index.right | 149 |
| abstract_inverted_index.seven | 193 |
| abstract_inverted_index.squat | 79, 112, 144, 150, 247 |
| abstract_inverted_index.study | 153 |
| abstract_inverted_index.their | 62, 66, 73, 87, 254, 258 |
| abstract_inverted_index.these | 29 |
| abstract_inverted_index.this. | 110 |
| abstract_inverted_index.torso | 63 |
| abstract_inverted_index.types | 145 |
| abstract_inverted_index.user, | 189 |
| abstract_inverted_index.which | 48, 53 |
| abstract_inverted_index.Bi-GRU | 197 |
| abstract_inverted_index.assess | 187 |
| abstract_inverted_index.caused | 33 |
| abstract_inverted_index.change | 90 |
| abstract_inverted_index.costly | 40 |
| abstract_inverted_index.decide | 162 |
| abstract_inverted_index.errors | 24 |
| abstract_inverted_index.fairly | 186 |
| abstract_inverted_index.firmly | 68 |
| abstract_inverted_index.joints | 102 |
| abstract_inverted_index.layer. | 216 |
| abstract_inverted_index.method | 141 |
| abstract_inverted_index.models | 221 |
| abstract_inverted_index.person | 56 |
| abstract_inverted_index.sports | 17 |
| abstract_inverted_index.squat, | 47 |
| abstract_inverted_index.squats | 191 |
| abstract_inverted_index.vision | 4 |
| abstract_inverted_index.athlete | 20 |
| abstract_inverted_index.causing | 86 |
| abstract_inverted_index.correct | 266 |
| abstract_inverted_index.disease | 132 |
| abstract_inverted_index.improve | 26 |
| abstract_inverted_index.joints, | 125 |
| abstract_inverted_index.lengths | 85 |
| abstract_inverted_index.methods | 30 |
| abstract_inverted_index.models, | 209 |
| abstract_inverted_index.overall | 118 |
| abstract_inverted_index.posture | 60 |
| abstract_inverted_index.prevent | 31 |
| abstract_inverted_index.returns | 71 |
| abstract_inverted_index.stacked | 170, 196 |
| abstract_inverted_index.upright | 75 |
| abstract_inverted_index.various | 101 |
| abstract_inverted_index.varying | 83 |
| abstract_inverted_index.without | 213 |
| abstract_inverted_index.workout | 9 |
| abstract_inverted_index.(Bi-GRU) | 175 |
| abstract_inverted_index.ability, | 255 |
| abstract_inverted_index.accuracy | 225 |
| abstract_inverted_index.classes. | 194 |
| abstract_inverted_index.compared | 205 |
| abstract_inverted_index.computer | 3 |
| abstract_inverted_index.dataset. | 240 |
| abstract_inverted_index.descends | 57 |
| abstract_inverted_index.exercise | 44 |
| abstract_inverted_index.identify | 23 |
| abstract_inverted_index.improves | 113 |
| abstract_inverted_index.industry | 21 |
| abstract_inverted_index.injuries | 32 |
| abstract_inverted_index.lowering | 127 |
| abstract_inverted_index.mobility | 99 |
| abstract_inverted_index.movement | 51 |
| abstract_inverted_index.muscular | 104 |
| abstract_inverted_index.observed | 96 |
| abstract_inverted_index.original | 74 |
| abstract_inverted_index.presents | 139 |
| abstract_inverted_index.proposed | 182 |
| abstract_inverted_index.standing | 55 |
| abstract_inverted_index.strength | 105 |
| abstract_inverted_index.version. | 151 |
| abstract_inverted_index.vertical | 64 |
| abstract_inverted_index.MediaPipe | 155 |
| abstract_inverted_index.Recurrent | 173 |
| abstract_inverted_index.analysis. | 10 |
| abstract_inverted_index.attaining | 223 |
| abstract_inverted_index.attention | 179, 201, 215 |
| abstract_inverted_index.corrected | 249 |
| abstract_inverted_index.depending | 256 |
| abstract_inverted_index.distinct, | 81 |
| abstract_inverted_index.executing | 244 |
| abstract_inverted_index.incorrect | 246 |
| abstract_inverted_index.observed. | 92 |
| abstract_inverted_index.position. | 76 |
| abstract_inverted_index.providing | 264 |
| abstract_inverted_index.squatting | 164 |
| abstract_inverted_index.strength, | 120 |
| abstract_inverted_index.technique | 160 |
| abstract_inverted_index.94% | 227 |
| abstract_inverted_index.Artificial | 0 |
| abstract_inverted_index.increasing | 117 |
| abstract_inverted_index.individual | 243 |
| abstract_inverted_index.widespread | 6 |
| abstract_inverted_index.classifying | 143 |
| abstract_inverted_index.extensively | 14 |
| abstract_inverted_index.instructors | 38 |
| abstract_inverted_index.outperforms | 219 |
| abstract_inverted_index.performance | 259 |
| abstract_inverted_index.Furthermore, | 28, 241 |
| abstract_inverted_index.applications | 7 |
| abstract_inverted_index.categorizing | 190 |
| abstract_inverted_index.consistently | 184, 237 |
| abstract_inverted_index.cutting-edge | 208 |
| abstract_inverted_index.demonstrated | 230 |
| abstract_inverted_index.development. | 136 |
| abstract_inverted_index.intelligence | 1 |
| abstract_inverted_index.performance. | 27 |
| abstract_inverted_index.proportions, | 262 |
| abstract_inverted_index.recommending | 147 |
| abstract_inverted_index.Bidirectional | 171 |
| abstract_inverted_index.strengthening | 121 |
| abstract_inverted_index.cardiovascular | 135 |
| abstract_inverted_index.learning-based | 159 |
| abstract_inverted_index.infrastructure. | 41 |
| abstract_inverted_index.person’s | 78 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.6299999952316284 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.94318168 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |