AIMI: Leveraging Future Knowledge and Personalization in Sparse Event Forecasting for Treatment Adherence Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2503.16091
Adherence to prescribed treatments is crucial for individuals with chronic conditions to avoid costly or adverse health outcomes. For certain patient groups, intensive lifestyle interventions are vital for enhancing medication adherence. Accurate forecasting of treatment adherence can open pathways to developing an on-demand intervention tool, enabling timely and personalized support. With the increasing popularity of smartphones and wearables, it is now easier than ever to develop and deploy smart activity monitoring systems. However, effective forecasting systems for treatment adherence based on wearable sensors are still not widely available. We close this gap by proposing Adherence Forecasting and Intervention with Machine Intelligence (AIMI). AIMI is a knowledge-guided adherence forecasting system that leverages smartphone sensors and previous medication history to estimate the likelihood of forgetting to take a prescribed medication. A user study was conducted with 27 participants who took daily medications to manage their cardiovascular diseases. We designed and developed CNN and LSTM-based forecasting models with various combinations of input features and found that LSTM models can forecast medication adherence with an accuracy of 0.932 and an F-1 score of 0.936. Moreover, through a series of ablation studies involving convolutional and recurrent neural network architectures, we demonstrate that leveraging known knowledge about future and personalized training enhances the accuracy of medication adherence forecasting. Code available: https://github.com/ab9mamun/AIMI.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2503.16091
- https://arxiv.org/pdf/2503.16091
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415288431
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415288431Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2503.16091Digital Object Identifier
- Title
-
AIMI: Leveraging Future Knowledge and Personalization in Sparse Event Forecasting for Treatment AdherenceWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-20Full publication date if available
- Authors
-
Abdullah Mamun, Diane J. Cook, Hassan GhasemzadehList of authors in order
- Landing page
-
https://arxiv.org/abs/2503.16091Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2503.16091Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2503.16091Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415288431 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2503.16091 |
| ids.doi | https://doi.org/10.48550/arxiv.2503.16091 |
| ids.openalex | https://openalex.org/W4415288431 |
| fwci | |
| type | preprint |
| title | AIMI: Leveraging Future Knowledge and Personalization in Sparse Event Forecasting for Treatment Adherence |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10845 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9609000086784363 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Advanced Causal Inference Techniques |
| topics[1].id | https://openalex.org/T11620 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9319000244140625 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2714 |
| topics[1].subfield.display_name | Family Practice |
| topics[1].display_name | Medication Adherence and Compliance |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2503.16091 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2503.16091 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2503.16091 |
| locations[1].id | doi:10.48550/arxiv.2503.16091 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2503.16091 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5076546624 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8330-1383 |
| authorships[0].author.display_name | Abdullah Mamun |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mamun, Abdullah |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5104074180 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Diane J. Cook |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Cook, Diane J. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5007139473 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1844-1416 |
| authorships[2].author.display_name | Hassan Ghasemzadeh |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Ghasemzadeh, Hassan |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2503.16091 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-17T00:00:00 |
| display_name | AIMI: Leveraging Future Knowledge and Personalization in Sparse Event Forecasting for Treatment Adherence |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10845 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9609000086784363 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Advanced Causal Inference Techniques |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2503.16091 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2503.16091 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2503.16091 |
| primary_location.id | pmh:oai:arXiv.org:2503.16091 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2503.16091 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2503.16091 |
| publication_date | 2025-03-20 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 128 |
| abstract_inverted_index.a | 104, 125, 182 |
| abstract_inverted_index.27 | 134 |
| abstract_inverted_index.We | 88, 145 |
| abstract_inverted_index.an | 41, 170, 175 |
| abstract_inverted_index.by | 92 |
| abstract_inverted_index.is | 4, 59, 103 |
| abstract_inverted_index.it | 58 |
| abstract_inverted_index.of | 33, 54, 121, 157, 172, 178, 184, 208 |
| abstract_inverted_index.on | 80 |
| abstract_inverted_index.or | 14 |
| abstract_inverted_index.to | 1, 11, 39, 64, 117, 123, 140 |
| abstract_inverted_index.we | 194 |
| abstract_inverted_index.CNN | 149 |
| abstract_inverted_index.F-1 | 176 |
| abstract_inverted_index.For | 18 |
| abstract_inverted_index.and | 47, 56, 66, 96, 113, 147, 150, 160, 174, 189, 202 |
| abstract_inverted_index.are | 25, 83 |
| abstract_inverted_index.can | 36, 165 |
| abstract_inverted_index.for | 6, 27, 76 |
| abstract_inverted_index.gap | 91 |
| abstract_inverted_index.not | 85 |
| abstract_inverted_index.now | 60 |
| abstract_inverted_index.the | 51, 119, 206 |
| abstract_inverted_index.was | 131 |
| abstract_inverted_index.who | 136 |
| abstract_inverted_index.AIMI | 102 |
| abstract_inverted_index.Code | 212 |
| abstract_inverted_index.LSTM | 163 |
| abstract_inverted_index.With | 50 |
| abstract_inverted_index.ever | 63 |
| abstract_inverted_index.open | 37 |
| abstract_inverted_index.take | 124 |
| abstract_inverted_index.than | 62 |
| abstract_inverted_index.that | 109, 162, 196 |
| abstract_inverted_index.this | 90 |
| abstract_inverted_index.took | 137 |
| abstract_inverted_index.user | 129 |
| abstract_inverted_index.with | 8, 98, 133, 154, 169 |
| abstract_inverted_index.0.932 | 173 |
| abstract_inverted_index.about | 200 |
| abstract_inverted_index.avoid | 12 |
| abstract_inverted_index.based | 79 |
| abstract_inverted_index.close | 89 |
| abstract_inverted_index.daily | 138 |
| abstract_inverted_index.found | 161 |
| abstract_inverted_index.input | 158 |
| abstract_inverted_index.known | 198 |
| abstract_inverted_index.score | 177 |
| abstract_inverted_index.smart | 68 |
| abstract_inverted_index.still | 84 |
| abstract_inverted_index.study | 130 |
| abstract_inverted_index.their | 142 |
| abstract_inverted_index.tool, | 44 |
| abstract_inverted_index.vital | 26 |
| abstract_inverted_index.0.936. | 179 |
| abstract_inverted_index.costly | 13 |
| abstract_inverted_index.deploy | 67 |
| abstract_inverted_index.easier | 61 |
| abstract_inverted_index.future | 201 |
| abstract_inverted_index.health | 16 |
| abstract_inverted_index.manage | 141 |
| abstract_inverted_index.models | 153, 164 |
| abstract_inverted_index.neural | 191 |
| abstract_inverted_index.series | 183 |
| abstract_inverted_index.system | 108 |
| abstract_inverted_index.timely | 46 |
| abstract_inverted_index.widely | 86 |
| abstract_inverted_index.(AIMI). | 101 |
| abstract_inverted_index.Machine | 99 |
| abstract_inverted_index.adverse | 15 |
| abstract_inverted_index.certain | 19 |
| abstract_inverted_index.chronic | 9 |
| abstract_inverted_index.crucial | 5 |
| abstract_inverted_index.develop | 65 |
| abstract_inverted_index.groups, | 21 |
| abstract_inverted_index.history | 116 |
| abstract_inverted_index.network | 192 |
| abstract_inverted_index.patient | 20 |
| abstract_inverted_index.sensors | 82, 112 |
| abstract_inverted_index.studies | 186 |
| abstract_inverted_index.systems | 75 |
| abstract_inverted_index.through | 181 |
| abstract_inverted_index.various | 155 |
| abstract_inverted_index.Accurate | 31 |
| abstract_inverted_index.However, | 72 |
| abstract_inverted_index.ablation | 185 |
| abstract_inverted_index.accuracy | 171, 207 |
| abstract_inverted_index.activity | 69 |
| abstract_inverted_index.designed | 146 |
| abstract_inverted_index.enabling | 45 |
| abstract_inverted_index.enhances | 205 |
| abstract_inverted_index.estimate | 118 |
| abstract_inverted_index.features | 159 |
| abstract_inverted_index.forecast | 166 |
| abstract_inverted_index.pathways | 38 |
| abstract_inverted_index.previous | 114 |
| abstract_inverted_index.support. | 49 |
| abstract_inverted_index.systems. | 71 |
| abstract_inverted_index.training | 204 |
| abstract_inverted_index.wearable | 81 |
| abstract_inverted_index.Adherence | 0, 94 |
| abstract_inverted_index.Moreover, | 180 |
| abstract_inverted_index.adherence | 35, 78, 106, 168, 210 |
| abstract_inverted_index.conducted | 132 |
| abstract_inverted_index.developed | 148 |
| abstract_inverted_index.diseases. | 144 |
| abstract_inverted_index.effective | 73 |
| abstract_inverted_index.enhancing | 28 |
| abstract_inverted_index.intensive | 22 |
| abstract_inverted_index.involving | 187 |
| abstract_inverted_index.knowledge | 199 |
| abstract_inverted_index.leverages | 110 |
| abstract_inverted_index.lifestyle | 23 |
| abstract_inverted_index.on-demand | 42 |
| abstract_inverted_index.outcomes. | 17 |
| abstract_inverted_index.proposing | 93 |
| abstract_inverted_index.recurrent | 190 |
| abstract_inverted_index.treatment | 34, 77 |
| abstract_inverted_index.LSTM-based | 151 |
| abstract_inverted_index.adherence. | 30 |
| abstract_inverted_index.available. | 87 |
| abstract_inverted_index.available: | 213 |
| abstract_inverted_index.conditions | 10 |
| abstract_inverted_index.developing | 40 |
| abstract_inverted_index.forgetting | 122 |
| abstract_inverted_index.increasing | 52 |
| abstract_inverted_index.leveraging | 197 |
| abstract_inverted_index.likelihood | 120 |
| abstract_inverted_index.medication | 29, 115, 167, 209 |
| abstract_inverted_index.monitoring | 70 |
| abstract_inverted_index.popularity | 53 |
| abstract_inverted_index.prescribed | 2, 126 |
| abstract_inverted_index.smartphone | 111 |
| abstract_inverted_index.treatments | 3 |
| abstract_inverted_index.wearables, | 57 |
| abstract_inverted_index.Forecasting | 95 |
| abstract_inverted_index.demonstrate | 195 |
| abstract_inverted_index.forecasting | 32, 74, 107, 152 |
| abstract_inverted_index.individuals | 7 |
| abstract_inverted_index.medication. | 127 |
| abstract_inverted_index.medications | 139 |
| abstract_inverted_index.smartphones | 55 |
| abstract_inverted_index.Intelligence | 100 |
| abstract_inverted_index.Intervention | 97 |
| abstract_inverted_index.combinations | 156 |
| abstract_inverted_index.forecasting. | 211 |
| abstract_inverted_index.intervention | 43 |
| abstract_inverted_index.participants | 135 |
| abstract_inverted_index.personalized | 48, 203 |
| abstract_inverted_index.convolutional | 188 |
| abstract_inverted_index.interventions | 24 |
| abstract_inverted_index.architectures, | 193 |
| abstract_inverted_index.cardiovascular | 143 |
| abstract_inverted_index.knowledge-guided | 105 |
| abstract_inverted_index.https://github.com/ab9mamun/AIMI. | 214 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |