AI/ML driven intrusion detection framework for IoT-enabled cold storage monitoring system Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-2190363/v1
An IoT-based monitoring system remotely controls and manages intelligent environments. Deployed sensors communicate themselves and transmit data over wireless communication. A sensor node (insider or outsider) is in the communication range, which can send data to other nodes. Due to such nature, it is more vulnerable to intrusions or attacks. Traditional (threshold based) is not powerful enough to detect intrusions, it shows low detection accuracy. An intrusion detection system is an efficient mechanism to detect malicious traffics and prevents abnormal activities. This paper suggests an intrusion detection framework for the cold storage monitoring system. In this, the temperature affects the environment and harms stored products. A malicious node work as a false data injection attack that manipulates temperature and forwards manipulated data, whereas a flooding attack disturbs the existing network. To handle these attacks, a dataset is generated and collected for training the machine learning techniques. Two machine learning techniques have applied as supervised learning (Bayesian Rough Set) and unsupervised learning (micro-clustering). These intrusion detection methods perform better and show high performance. Moreover, this work also provides the comparative analysis of the generated dataset to other IDS datasets.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-2190363/v1
- https://www.researchsquare.com/article/rs-2190363/latest.pdf
- OA Status
- gold
- Cited By
- 2
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4311123179
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4311123179Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-2190363/v1Digital Object Identifier
- Title
-
AI/ML driven intrusion detection framework for IoT-enabled cold storage monitoring systemWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-12Full publication date if available
- Authors
-
Mahendra Prasad, Pankaj Pal, Sachin Tripathi, Keshav DahalList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-2190363/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-2190363/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-2190363/latest.pdfDirect OA link when available
- Concepts
-
Intrusion detection system, Computer science, Node (physics), Flooding (psychology), Cluster analysis, Wireless sensor network, Internet of Things, Data mining, Artificial intelligence, Machine learning, Real-time computing, Computer network, Computer security, Engineering, Psychology, Psychotherapist, Structural engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2Per-year citation counts (last 5 years)
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4311123179 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-2190363/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-2190363/v1 |
| ids.openalex | https://openalex.org/W4311123179 |
| fwci | 0.42848349 |
| type | preprint |
| title | AI/ML driven intrusion detection framework for IoT-enabled cold storage monitoring system |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10400 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Security and Intrusion Detection |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9948999881744385 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T11241 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9940999746322632 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Advanced Malware Detection Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C35525427 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8169342279434204 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q745881 |
| concepts[0].display_name | Intrusion detection system |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7691969275474548 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C62611344 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6386424899101257 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1062658 |
| concepts[2].display_name | Node (physics) |
| concepts[3].id | https://openalex.org/C186594467 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5612213611602783 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1429176 |
| concepts[3].display_name | Flooding (psychology) |
| concepts[4].id | https://openalex.org/C73555534 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5485898852348328 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[4].display_name | Cluster analysis |
| concepts[5].id | https://openalex.org/C24590314 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5201438069343567 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q336038 |
| concepts[5].display_name | Wireless sensor network |
| concepts[6].id | https://openalex.org/C81860439 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5032324194908142 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q251212 |
| concepts[6].display_name | Internet of Things |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4237039089202881 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4073285758495331 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.40585756301879883 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C79403827 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4003985524177551 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[10].display_name | Real-time computing |
| concepts[11].id | https://openalex.org/C31258907 |
| concepts[11].level | 1 |
| concepts[11].score | 0.31698983907699585 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[11].display_name | Computer network |
| concepts[12].id | https://openalex.org/C38652104 |
| concepts[12].level | 1 |
| concepts[12].score | 0.23245373368263245 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[12].display_name | Computer security |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.13347965478897095 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C15744967 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[14].display_name | Psychology |
| concepts[15].id | https://openalex.org/C542102704 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q183257 |
| concepts[15].display_name | Psychotherapist |
| concepts[16].id | https://openalex.org/C66938386 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[16].display_name | Structural engineering |
| keywords[0].id | https://openalex.org/keywords/intrusion-detection-system |
| keywords[0].score | 0.8169342279434204 |
| keywords[0].display_name | Intrusion detection system |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7691969275474548 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/node |
| keywords[2].score | 0.6386424899101257 |
| keywords[2].display_name | Node (physics) |
| keywords[3].id | https://openalex.org/keywords/flooding |
| keywords[3].score | 0.5612213611602783 |
| keywords[3].display_name | Flooding (psychology) |
| keywords[4].id | https://openalex.org/keywords/cluster-analysis |
| keywords[4].score | 0.5485898852348328 |
| keywords[4].display_name | Cluster analysis |
| keywords[5].id | https://openalex.org/keywords/wireless-sensor-network |
| keywords[5].score | 0.5201438069343567 |
| keywords[5].display_name | Wireless sensor network |
| keywords[6].id | https://openalex.org/keywords/internet-of-things |
| keywords[6].score | 0.5032324194908142 |
| keywords[6].display_name | Internet of Things |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.4237039089202881 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.4073285758495331 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.40585756301879883 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/real-time-computing |
| keywords[10].score | 0.4003985524177551 |
| keywords[10].display_name | Real-time computing |
| keywords[11].id | https://openalex.org/keywords/computer-network |
| keywords[11].score | 0.31698983907699585 |
| keywords[11].display_name | Computer network |
| keywords[12].id | https://openalex.org/keywords/computer-security |
| keywords[12].score | 0.23245373368263245 |
| keywords[12].display_name | Computer security |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.13347965478897095 |
| keywords[13].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-2190363/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-2190363/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-2190363/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5015979022 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1686-2364 |
| authorships[0].author.display_name | Mahendra Prasad |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I189109744 |
| authorships[0].affiliations[0].raw_affiliation_string | Indian Institute of Technology (Indian School of Mines): Indian Institute of Technology |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I189109744 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Computer Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India. |
| authorships[0].institutions[0].id | https://openalex.org/I189109744 |
| authorships[0].institutions[0].ror | https://ror.org/013v3cc28 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I189109744 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Indian Institute of Technology Dhanbad |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mahendra Prasad |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India., Indian Institute of Technology (Indian School of Mines): Indian Institute of Technology |
| authorships[1].author.id | https://openalex.org/A5010143059 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1766-7533 |
| authorships[1].author.display_name | Pankaj Pal |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I189109744 |
| authorships[1].affiliations[0].raw_affiliation_string | Indian Institute of Technology (Indian School of Mines): Indian Institute of Technology |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I189109744 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Computer Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India. |
| authorships[1].institutions[0].id | https://openalex.org/I189109744 |
| authorships[1].institutions[0].ror | https://ror.org/013v3cc28 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I189109744 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Indian Institute of Technology Dhanbad |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Pankaj Pal |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India., Indian Institute of Technology (Indian School of Mines): Indian Institute of Technology |
| authorships[2].author.id | https://openalex.org/A5089777702 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0222-8204 |
| authorships[2].author.display_name | Sachin Tripathi |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I189109744 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India. |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I189109744 |
| authorships[2].affiliations[1].raw_affiliation_string | Indian Institute of Technology (Indian School of Mines): Indian Institute of Technology |
| authorships[2].institutions[0].id | https://openalex.org/I189109744 |
| authorships[2].institutions[0].ror | https://ror.org/013v3cc28 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I189109744 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Indian Institute of Technology Dhanbad |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sachin Tripathi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India., Indian Institute of Technology (Indian School of Mines): Indian Institute of Technology |
| authorships[3].author.id | https://openalex.org/A5046025661 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1789-893X |
| authorships[3].author.display_name | Keshav Dahal |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I868834043 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, UK. |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I868834043 |
| authorships[3].affiliations[1].raw_affiliation_string | University of the West of Scotland - Paisley Campus: University of the West of Scotland |
| authorships[3].institutions[0].id | https://openalex.org/I868834043 |
| authorships[3].institutions[0].ror | https://ror.org/04w3d2v20 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I868834043 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | University of the West of Scotland |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Keshav Dahal |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, UK., University of the West of Scotland - Paisley Campus: University of the West of Scotland |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-2190363/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | AI/ML driven intrusion detection framework for IoT-enabled cold storage monitoring system |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10400 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Security and Intrusion Detection |
| related_works | https://openalex.org/W4245926026, https://openalex.org/W4311097251, https://openalex.org/W2586548817, https://openalex.org/W2625093826, https://openalex.org/W4410295802, https://openalex.org/W4200598720, https://openalex.org/W2921026492, https://openalex.org/W4247463117, https://openalex.org/W4361251261, https://openalex.org/W2111243638 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-2190363/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-2190363/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-2190363/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-2190363/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-2190363/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-2190363/v1 |
| publication_date | 2022-12-12 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3007419331, https://openalex.org/W3088721298, https://openalex.org/W3184044395, https://openalex.org/W2744973655, https://openalex.org/W3031028459, https://openalex.org/W3012636270, https://openalex.org/W2990352665, https://openalex.org/W3089329725, https://openalex.org/W3213755975, https://openalex.org/W3202083238, https://openalex.org/W2998722477, https://openalex.org/W3157871125, https://openalex.org/W3082025521, https://openalex.org/W3195120573, https://openalex.org/W3194930326, https://openalex.org/W3006926329, https://openalex.org/W2942963954, https://openalex.org/W3183353669, https://openalex.org/W3169330763, https://openalex.org/W3129524288, https://openalex.org/W2749864251, https://openalex.org/W4214606065, https://openalex.org/W4285587114, https://openalex.org/W3037405415, https://openalex.org/W2799758613, https://openalex.org/W3022604549, https://openalex.org/W2997801417, https://openalex.org/W4212955268, https://openalex.org/W2892446648, https://openalex.org/W2964937598, https://openalex.org/W3122864121, https://openalex.org/W3207891930 |
| referenced_works_count | 32 |
| abstract_inverted_index.A | 21, 106 |
| abstract_inverted_index.a | 111, 124, 135 |
| abstract_inverted_index.An | 1, 66 |
| abstract_inverted_index.In | 95 |
| abstract_inverted_index.To | 131 |
| abstract_inverted_index.an | 71, 85 |
| abstract_inverted_index.as | 110, 153 |
| abstract_inverted_index.in | 28 |
| abstract_inverted_index.is | 27, 44, 54, 70, 137 |
| abstract_inverted_index.it | 43, 61 |
| abstract_inverted_index.of | 181 |
| abstract_inverted_index.or | 25, 49 |
| abstract_inverted_index.to | 36, 40, 47, 58, 74, 185 |
| abstract_inverted_index.Due | 39 |
| abstract_inverted_index.IDS | 187 |
| abstract_inverted_index.Two | 147 |
| abstract_inverted_index.and | 7, 15, 78, 102, 119, 139, 159, 169 |
| abstract_inverted_index.can | 33 |
| abstract_inverted_index.for | 89, 141 |
| abstract_inverted_index.low | 63 |
| abstract_inverted_index.not | 55 |
| abstract_inverted_index.the | 29, 90, 97, 100, 128, 143, 178, 182 |
| abstract_inverted_index.Set) | 158 |
| abstract_inverted_index.This | 82 |
| abstract_inverted_index.also | 176 |
| abstract_inverted_index.cold | 91 |
| abstract_inverted_index.data | 17, 35, 113 |
| abstract_inverted_index.have | 151 |
| abstract_inverted_index.high | 171 |
| abstract_inverted_index.more | 45 |
| abstract_inverted_index.node | 23, 108 |
| abstract_inverted_index.over | 18 |
| abstract_inverted_index.send | 34 |
| abstract_inverted_index.show | 170 |
| abstract_inverted_index.such | 41 |
| abstract_inverted_index.that | 116 |
| abstract_inverted_index.this | 174 |
| abstract_inverted_index.work | 109, 175 |
| abstract_inverted_index.Rough | 157 |
| abstract_inverted_index.These | 163 |
| abstract_inverted_index.data, | 122 |
| abstract_inverted_index.false | 112 |
| abstract_inverted_index.harms | 103 |
| abstract_inverted_index.other | 37, 186 |
| abstract_inverted_index.paper | 83 |
| abstract_inverted_index.shows | 62 |
| abstract_inverted_index.these | 133 |
| abstract_inverted_index.this, | 96 |
| abstract_inverted_index.which | 32 |
| abstract_inverted_index.attack | 115, 126 |
| abstract_inverted_index.based) | 53 |
| abstract_inverted_index.better | 168 |
| abstract_inverted_index.detect | 59, 75 |
| abstract_inverted_index.enough | 57 |
| abstract_inverted_index.handle | 132 |
| abstract_inverted_index.nodes. | 38 |
| abstract_inverted_index.range, | 31 |
| abstract_inverted_index.sensor | 22 |
| abstract_inverted_index.stored | 104 |
| abstract_inverted_index.system | 4, 69 |
| abstract_inverted_index.affects | 99 |
| abstract_inverted_index.applied | 152 |
| abstract_inverted_index.dataset | 136, 184 |
| abstract_inverted_index.machine | 144, 148 |
| abstract_inverted_index.manages | 8 |
| abstract_inverted_index.methods | 166 |
| abstract_inverted_index.nature, | 42 |
| abstract_inverted_index.perform | 167 |
| abstract_inverted_index.sensors | 12 |
| abstract_inverted_index.storage | 92 |
| abstract_inverted_index.system. | 94 |
| abstract_inverted_index.whereas | 123 |
| abstract_inverted_index.(insider | 24 |
| abstract_inverted_index.Deployed | 11 |
| abstract_inverted_index.abnormal | 80 |
| abstract_inverted_index.analysis | 180 |
| abstract_inverted_index.attacks, | 134 |
| abstract_inverted_index.attacks. | 50 |
| abstract_inverted_index.controls | 6 |
| abstract_inverted_index.disturbs | 127 |
| abstract_inverted_index.existing | 129 |
| abstract_inverted_index.flooding | 125 |
| abstract_inverted_index.forwards | 120 |
| abstract_inverted_index.learning | 145, 149, 155, 161 |
| abstract_inverted_index.network. | 130 |
| abstract_inverted_index.powerful | 56 |
| abstract_inverted_index.prevents | 79 |
| abstract_inverted_index.provides | 177 |
| abstract_inverted_index.remotely | 5 |
| abstract_inverted_index.suggests | 84 |
| abstract_inverted_index.traffics | 77 |
| abstract_inverted_index.training | 142 |
| abstract_inverted_index.transmit | 16 |
| abstract_inverted_index.wireless | 19 |
| abstract_inverted_index.(Bayesian | 156 |
| abstract_inverted_index.IoT-based | 2 |
| abstract_inverted_index.Moreover, | 173 |
| abstract_inverted_index.accuracy. | 65 |
| abstract_inverted_index.collected | 140 |
| abstract_inverted_index.datasets. | 188 |
| abstract_inverted_index.detection | 64, 68, 87, 165 |
| abstract_inverted_index.efficient | 72 |
| abstract_inverted_index.framework | 88 |
| abstract_inverted_index.generated | 138, 183 |
| abstract_inverted_index.injection | 114 |
| abstract_inverted_index.intrusion | 67, 86, 164 |
| abstract_inverted_index.malicious | 76, 107 |
| abstract_inverted_index.mechanism | 73 |
| abstract_inverted_index.outsider) | 26 |
| abstract_inverted_index.products. | 105 |
| abstract_inverted_index.(threshold | 52 |
| abstract_inverted_index.intrusions | 48 |
| abstract_inverted_index.monitoring | 3, 93 |
| abstract_inverted_index.supervised | 154 |
| abstract_inverted_index.techniques | 150 |
| abstract_inverted_index.themselves | 14 |
| abstract_inverted_index.vulnerable | 46 |
| abstract_inverted_index.Traditional | 51 |
| abstract_inverted_index.activities. | 81 |
| abstract_inverted_index.communicate | 13 |
| abstract_inverted_index.comparative | 179 |
| abstract_inverted_index.environment | 101 |
| abstract_inverted_index.intelligent | 9 |
| abstract_inverted_index.intrusions, | 60 |
| abstract_inverted_index.manipulated | 121 |
| abstract_inverted_index.manipulates | 117 |
| abstract_inverted_index.techniques. | 146 |
| abstract_inverted_index.temperature | 98, 118 |
| abstract_inverted_index.performance. | 172 |
| abstract_inverted_index.unsupervised | 160 |
| abstract_inverted_index.communication | 30 |
| abstract_inverted_index.environments. | 10 |
| abstract_inverted_index.communication. | 20 |
| abstract_inverted_index.(micro-clustering). | 162 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.59386732 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |