Airport Detection Using End-to-End Convolutional Neural Network with Hard Example Mining Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.3390/rs9111198
Deep convolutional neural network (CNN) achieves outstanding performance in the field of target detection. As one of the most typical targets in remote sensing images (RSIs), airport has attracted increasing attention in recent years. However, the essential challenge for using deep CNN to detect airport is the great imbalance between the number of airports and background examples in large-scale RSIs, which may lead to over-fitting. In this paper, we develop a hard example mining and weight-balanced strategy to construct a novel end-to-end convolutional neural network for airport detection. The initial motivation of the proposed method is that backgrounds contain an overwhelming number of easy examples and a few hard examples. Therefore, we design a hard example mining layer to automatically select hard examples by their losses, and implement a new weight-balanced loss function to optimize CNN. Meanwhile, the cascade design of proposal extraction and object detection in our network releases the constraint on input image size and reduces spurious false positives. Compared with geometric characteristics and low-level manually designed features, the hard example mining based network could extract high-level features, which is more robust for airport detection in complex environment. The proposed method is validated on a multi-scale dataset with complex background collected from Google Earth. The experimental results demonstrate that our proposed method is robust, and superior to the state-of-the-art airport detection models.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs9111198
- https://www.mdpi.com/2072-4292/9/11/1198/pdf?version=1511425391
- OA Status
- gold
- Cited By
- 39
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2769756082
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2769756082Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs9111198Digital Object Identifier
- Title
-
Airport Detection Using End-to-End Convolutional Neural Network with Hard Example MiningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-11-21Full publication date if available
- Authors
-
Bowen Cai, Zhiguo Jiang, Haopeng Zhang, Danpei Zhao, Yuan YaoList of authors in order
- Landing page
-
https://doi.org/10.3390/rs9111198Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/9/11/1198/pdf?version=1511425391Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/9/11/1198/pdf?version=1511425391Direct OA link when available
- Concepts
-
Computer science, Convolutional neural network, End-to-end principle, Deep learning, Data mining, Object detection, Spurious relationship, Artificial intelligence, False positive paradox, Field (mathematics), Attention network, Pattern recognition (psychology), Machine learning, Mathematics, Pure mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
39Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 4, 2023: 1, 2022: 5, 2021: 7Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2769756082 |
|---|---|
| doi | https://doi.org/10.3390/rs9111198 |
| ids.doi | https://doi.org/10.3390/rs9111198 |
| ids.mag | 2769756082 |
| ids.openalex | https://openalex.org/W2769756082 |
| fwci | 2.4150942 |
| type | article |
| title | Airport Detection Using End-to-End Convolutional Neural Network with Hard Example Mining |
| awards[0].id | https://openalex.org/G6293480727 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 61501009, 61371134, 61071137 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G824648725 |
| awards[1].funder_id | https://openalex.org/F4320335777 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2016YFB0501300, 2016YFB0501302 |
| awards[1].funder_display_name | National Key Research and Development Program of China |
| biblio.issue | 11 |
| biblio.volume | 9 |
| biblio.last_page | 1198 |
| biblio.first_page | 1198 |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T13282 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9975000023841858 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2212 |
| topics[1].subfield.display_name | Ocean Engineering |
| topics[1].display_name | Automated Road and Building Extraction |
| topics[2].id | https://openalex.org/T10331 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9968000054359436 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Video Surveillance and Tracking Methods |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335777 |
| funders[1].ror | |
| funders[1].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.812363862991333 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C81363708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6764195561408997 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[1].display_name | Convolutional neural network |
| concepts[2].id | https://openalex.org/C74296488 |
| concepts[2].level | 2 |
| concepts[2].score | 0.57049560546875 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2527392 |
| concepts[2].display_name | End-to-end principle |
| concepts[3].id | https://openalex.org/C108583219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5096192359924316 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep learning |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.500727653503418 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| concepts[5].id | https://openalex.org/C2776151529 |
| concepts[5].level | 3 |
| concepts[5].score | 0.464434951543808 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[5].display_name | Object detection |
| concepts[6].id | https://openalex.org/C97256817 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45546871423721313 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1462316 |
| concepts[6].display_name | Spurious relationship |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.45361071825027466 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C64869954 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4464244842529297 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1859747 |
| concepts[8].display_name | False positive paradox |
| concepts[9].id | https://openalex.org/C9652623 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43756601214408875 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[9].display_name | Field (mathematics) |
| concepts[10].id | https://openalex.org/C2993807640 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4171743392944336 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q103709453 |
| concepts[10].display_name | Attention network |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.347810298204422 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.28863176703453064 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C202444582 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[14].display_name | Pure mathematics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.812363862991333 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[1].score | 0.6764195561408997 |
| keywords[1].display_name | Convolutional neural network |
| keywords[2].id | https://openalex.org/keywords/end-to-end-principle |
| keywords[2].score | 0.57049560546875 |
| keywords[2].display_name | End-to-end principle |
| keywords[3].id | https://openalex.org/keywords/deep-learning |
| keywords[3].score | 0.5096192359924316 |
| keywords[3].display_name | Deep learning |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.500727653503418 |
| keywords[4].display_name | Data mining |
| keywords[5].id | https://openalex.org/keywords/object-detection |
| keywords[5].score | 0.464434951543808 |
| keywords[5].display_name | Object detection |
| keywords[6].id | https://openalex.org/keywords/spurious-relationship |
| keywords[6].score | 0.45546871423721313 |
| keywords[6].display_name | Spurious relationship |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.45361071825027466 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/false-positive-paradox |
| keywords[8].score | 0.4464244842529297 |
| keywords[8].display_name | False positive paradox |
| keywords[9].id | https://openalex.org/keywords/field |
| keywords[9].score | 0.43756601214408875 |
| keywords[9].display_name | Field (mathematics) |
| keywords[10].id | https://openalex.org/keywords/attention-network |
| keywords[10].score | 0.4171743392944336 |
| keywords[10].display_name | Attention network |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.347810298204422 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.28863176703453064 |
| keywords[12].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.3390/rs9111198 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/9/11/1198/pdf?version=1511425391 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs9111198 |
| locations[1].id | pmh:oai:doaj.org/article:b9b86543b5274a3589a46c514cfe5a5c |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 9, Iss 11, p 1198 (2017) |
| locations[1].landing_page_url | https://doaj.org/article/b9b86543b5274a3589a46c514cfe5a5c |
| locations[2].id | pmh:oai:mdpi.com:/2072-4292/9/11/1198/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Remote Sensing; Volume 9; Issue 11; Pages: 1198 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/rs9111198 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5102025303 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5945-9911 |
| authorships[0].author.display_name | Bowen Cai |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[0].affiliations[0].raw_affiliation_string | Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I82880672 |
| authorships[0].affiliations[1].raw_affiliation_string | Beijing Key Laboratory of Digital Media, Beihang University, Beijing 100191, China |
| authorships[0].institutions[0].id | https://openalex.org/I82880672 |
| authorships[0].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beihang University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bowen Cai |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Beijing Key Laboratory of Digital Media, Beihang University, Beijing 100191, China, Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, China |
| authorships[1].author.id | https://openalex.org/A5016853247 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8786-2540 |
| authorships[1].author.display_name | Zhiguo Jiang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[1].affiliations[0].raw_affiliation_string | Beijing Key Laboratory of Digital Media, Beihang University, Beijing 100191, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I82880672 |
| authorships[1].affiliations[1].raw_affiliation_string | Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, China |
| authorships[1].institutions[0].id | https://openalex.org/I82880672 |
| authorships[1].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beihang University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhiguo Jiang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Beijing Key Laboratory of Digital Media, Beihang University, Beijing 100191, China, Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, China |
| authorships[2].author.id | https://openalex.org/A5100729435 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1981-8307 |
| authorships[2].author.display_name | Haopeng Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[2].affiliations[0].raw_affiliation_string | Beijing Key Laboratory of Digital Media, Beihang University, Beijing 100191, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I82880672 |
| authorships[2].affiliations[1].raw_affiliation_string | Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, China |
| authorships[2].institutions[0].id | https://openalex.org/I82880672 |
| authorships[2].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beihang University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Haopeng Zhang |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Beijing Key Laboratory of Digital Media, Beihang University, Beijing 100191, China, Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, China |
| authorships[3].author.id | https://openalex.org/A5036886150 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6701-0471 |
| authorships[3].author.display_name | Danpei Zhao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[3].affiliations[0].raw_affiliation_string | Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I82880672 |
| authorships[3].affiliations[1].raw_affiliation_string | Beijing Key Laboratory of Digital Media, Beihang University, Beijing 100191, China |
| authorships[3].institutions[0].id | https://openalex.org/I82880672 |
| authorships[3].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beihang University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Danpei Zhao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Beijing Key Laboratory of Digital Media, Beihang University, Beijing 100191, China, Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, China |
| authorships[4].author.id | https://openalex.org/A5103072099 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3616-2496 |
| authorships[4].author.display_name | Yuan Yao |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[4].affiliations[0].raw_affiliation_string | Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I82880672 |
| authorships[4].affiliations[1].raw_affiliation_string | Beijing Key Laboratory of Digital Media, Beihang University, Beijing 100191, China |
| authorships[4].institutions[0].id | https://openalex.org/I82880672 |
| authorships[4].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Beihang University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yuan Yao |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Beijing Key Laboratory of Digital Media, Beihang University, Beijing 100191, China, Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/9/11/1198/pdf?version=1511425391 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Airport Detection Using End-to-End Convolutional Neural Network with Hard Example Mining |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2162899405, https://openalex.org/W3113091479, https://openalex.org/W941090075, https://openalex.org/W2044987316, https://openalex.org/W2237480245, https://openalex.org/W3134374554, https://openalex.org/W2519167559, https://openalex.org/W2075065631, https://openalex.org/W4288358396, https://openalex.org/W3091069230 |
| cited_by_count | 39 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 7 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 7 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 10 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/rs9111198 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/9/11/1198/pdf?version=1511425391 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs9111198 |
| primary_location.id | doi:10.3390/rs9111198 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/9/11/1198/pdf?version=1511425391 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs9111198 |
| publication_date | 2017-11-21 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W2603154372, https://openalex.org/W2486449641, https://openalex.org/W2733535455, https://openalex.org/W2746325398, https://openalex.org/W2587790406, https://openalex.org/W3125782078, https://openalex.org/W2462239623, https://openalex.org/W6728623438, https://openalex.org/W1963824880, https://openalex.org/W2043652697, https://openalex.org/W2552955500, https://openalex.org/W2053506196, https://openalex.org/W2039097087, https://openalex.org/W2051936565, https://openalex.org/W2151103935, https://openalex.org/W2163605009, https://openalex.org/W1536680647, https://openalex.org/W2963037989, https://openalex.org/W2613718673, https://openalex.org/W2193145675, https://openalex.org/W2565950292, https://openalex.org/W2582523608, https://openalex.org/W2412558220, https://openalex.org/W2512351403, https://openalex.org/W2554425781, https://openalex.org/W2577537809, https://openalex.org/W2755188318, https://openalex.org/W2012273471, https://openalex.org/W2963516811, https://openalex.org/W219040644, https://openalex.org/W1849277567, https://openalex.org/W2088812222, https://openalex.org/W1958328135, https://openalex.org/W1480746830, https://openalex.org/W2088049833, https://openalex.org/W3106250896, https://openalex.org/W2620899671 |
| referenced_works_count | 37 |
| abstract_inverted_index.a | 70, 79, 106, 113, 128, 196 |
| abstract_inverted_index.As | 14 |
| abstract_inverted_index.In | 65 |
| abstract_inverted_index.an | 99 |
| abstract_inverted_index.by | 123 |
| abstract_inverted_index.in | 8, 21, 31, 57, 146, 187 |
| abstract_inverted_index.is | 45, 95, 181, 193, 214 |
| abstract_inverted_index.of | 11, 16, 52, 91, 102, 140 |
| abstract_inverted_index.on | 152, 195 |
| abstract_inverted_index.to | 42, 63, 77, 118, 133, 218 |
| abstract_inverted_index.we | 68, 111 |
| abstract_inverted_index.CNN | 41 |
| abstract_inverted_index.The | 88, 190, 206 |
| abstract_inverted_index.and | 54, 74, 105, 126, 143, 156, 165, 216 |
| abstract_inverted_index.few | 107 |
| abstract_inverted_index.for | 38, 85, 184 |
| abstract_inverted_index.has | 27 |
| abstract_inverted_index.may | 61 |
| abstract_inverted_index.new | 129 |
| abstract_inverted_index.one | 15 |
| abstract_inverted_index.our | 147, 211 |
| abstract_inverted_index.the | 9, 17, 35, 46, 50, 92, 137, 150, 170, 219 |
| abstract_inverted_index.CNN. | 135 |
| abstract_inverted_index.Deep | 0 |
| abstract_inverted_index.deep | 40 |
| abstract_inverted_index.easy | 103 |
| abstract_inverted_index.from | 203 |
| abstract_inverted_index.hard | 71, 108, 114, 121, 171 |
| abstract_inverted_index.lead | 62 |
| abstract_inverted_index.loss | 131 |
| abstract_inverted_index.more | 182 |
| abstract_inverted_index.most | 18 |
| abstract_inverted_index.size | 155 |
| abstract_inverted_index.that | 96, 210 |
| abstract_inverted_index.this | 66 |
| abstract_inverted_index.with | 162, 199 |
| abstract_inverted_index.(CNN) | 4 |
| abstract_inverted_index.RSIs, | 59 |
| abstract_inverted_index.based | 174 |
| abstract_inverted_index.could | 176 |
| abstract_inverted_index.false | 159 |
| abstract_inverted_index.field | 10 |
| abstract_inverted_index.great | 47 |
| abstract_inverted_index.image | 154 |
| abstract_inverted_index.input | 153 |
| abstract_inverted_index.layer | 117 |
| abstract_inverted_index.novel | 80 |
| abstract_inverted_index.their | 124 |
| abstract_inverted_index.using | 39 |
| abstract_inverted_index.which | 60, 180 |
| abstract_inverted_index.Earth. | 205 |
| abstract_inverted_index.Google | 204 |
| abstract_inverted_index.design | 112, 139 |
| abstract_inverted_index.detect | 43 |
| abstract_inverted_index.images | 24 |
| abstract_inverted_index.method | 94, 192, 213 |
| abstract_inverted_index.mining | 73, 116, 173 |
| abstract_inverted_index.neural | 2, 83 |
| abstract_inverted_index.number | 51, 101 |
| abstract_inverted_index.object | 144 |
| abstract_inverted_index.paper, | 67 |
| abstract_inverted_index.recent | 32 |
| abstract_inverted_index.remote | 22 |
| abstract_inverted_index.robust | 183 |
| abstract_inverted_index.select | 120 |
| abstract_inverted_index.target | 12 |
| abstract_inverted_index.years. | 33 |
| abstract_inverted_index.(RSIs), | 25 |
| abstract_inverted_index.airport | 26, 44, 86, 185, 221 |
| abstract_inverted_index.between | 49 |
| abstract_inverted_index.cascade | 138 |
| abstract_inverted_index.complex | 188, 200 |
| abstract_inverted_index.contain | 98 |
| abstract_inverted_index.dataset | 198 |
| abstract_inverted_index.develop | 69 |
| abstract_inverted_index.example | 72, 115, 172 |
| abstract_inverted_index.extract | 177 |
| abstract_inverted_index.initial | 89 |
| abstract_inverted_index.losses, | 125 |
| abstract_inverted_index.models. | 223 |
| abstract_inverted_index.network | 3, 84, 148, 175 |
| abstract_inverted_index.reduces | 157 |
| abstract_inverted_index.results | 208 |
| abstract_inverted_index.robust, | 215 |
| abstract_inverted_index.sensing | 23 |
| abstract_inverted_index.targets | 20 |
| abstract_inverted_index.typical | 19 |
| abstract_inverted_index.Compared | 161 |
| abstract_inverted_index.However, | 34 |
| abstract_inverted_index.achieves | 5 |
| abstract_inverted_index.airports | 53 |
| abstract_inverted_index.designed | 168 |
| abstract_inverted_index.examples | 56, 104, 122 |
| abstract_inverted_index.function | 132 |
| abstract_inverted_index.manually | 167 |
| abstract_inverted_index.optimize | 134 |
| abstract_inverted_index.proposal | 141 |
| abstract_inverted_index.proposed | 93, 191, 212 |
| abstract_inverted_index.releases | 149 |
| abstract_inverted_index.spurious | 158 |
| abstract_inverted_index.strategy | 76 |
| abstract_inverted_index.superior | 217 |
| abstract_inverted_index.attention | 30 |
| abstract_inverted_index.attracted | 28 |
| abstract_inverted_index.challenge | 37 |
| abstract_inverted_index.collected | 202 |
| abstract_inverted_index.construct | 78 |
| abstract_inverted_index.detection | 145, 186, 222 |
| abstract_inverted_index.essential | 36 |
| abstract_inverted_index.examples. | 109 |
| abstract_inverted_index.features, | 169, 179 |
| abstract_inverted_index.geometric | 163 |
| abstract_inverted_index.imbalance | 48 |
| abstract_inverted_index.implement | 127 |
| abstract_inverted_index.low-level | 166 |
| abstract_inverted_index.validated | 194 |
| abstract_inverted_index.Meanwhile, | 136 |
| abstract_inverted_index.Therefore, | 110 |
| abstract_inverted_index.background | 55, 201 |
| abstract_inverted_index.constraint | 151 |
| abstract_inverted_index.detection. | 13, 87 |
| abstract_inverted_index.end-to-end | 81 |
| abstract_inverted_index.extraction | 142 |
| abstract_inverted_index.high-level | 178 |
| abstract_inverted_index.increasing | 29 |
| abstract_inverted_index.motivation | 90 |
| abstract_inverted_index.positives. | 160 |
| abstract_inverted_index.backgrounds | 97 |
| abstract_inverted_index.demonstrate | 209 |
| abstract_inverted_index.large-scale | 58 |
| abstract_inverted_index.multi-scale | 197 |
| abstract_inverted_index.outstanding | 6 |
| abstract_inverted_index.performance | 7 |
| abstract_inverted_index.environment. | 189 |
| abstract_inverted_index.experimental | 207 |
| abstract_inverted_index.overwhelming | 100 |
| abstract_inverted_index.automatically | 119 |
| abstract_inverted_index.convolutional | 1, 82 |
| abstract_inverted_index.over-fitting. | 64 |
| abstract_inverted_index.characteristics | 164 |
| abstract_inverted_index.weight-balanced | 75, 130 |
| abstract_inverted_index.state-of-the-art | 220 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5100729435 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I82880672 |
| citation_normalized_percentile.value | 0.91420023 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |