Algebraic and geometric aspects of rational $Γ$-inner functions Article Swipe
Jim Agler
,
Zinaida A. Lykova
,
N. J. Young
·
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1502.04216
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1502.04216
The set \[ Γ{\stackrel{\rm def}{=}} \{(z+w,zw):|z|\leq 1,|w|\leq 1\} \subset {\mathbb{C}}^2 \] has intriguing complex-geometric properties; it has a 3-parameter group of automorphisms, its distinguished boundary is a ruled surface homeomorphic to the Möbius band and it has a special subvariety which is the only complex geodesic that is invariant under all automorphisms. We exploit this geometry to develop an explicit and detailed structure theory for the rational maps from the unit disc to $Γ$ that map the boundary of the disc to the distinguished boundary of $Γ$.
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.48550/arxiv.1502.04216
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394653203
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394653203Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1502.04216Digital Object Identifier
- Title
-
Algebraic and geometric aspects of rational $Γ$-inner functionsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-02-14Full publication date if available
- Authors
-
Jim Agler, Zinaida A. Lykova, N. J. YoungList of authors in order
- Landing page
-
https://doi.org/10.48550/arxiv.1502.04216Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.48550/arxiv.1502.04216Direct OA link when available
- Concepts
-
Mathematics, Algebraic number, Algebra over a field, Pure mathematics, Mathematical economics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2016: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394653203 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1502.04216 |
| ids.doi | https://doi.org/10.48550/arxiv.1502.04216 |
| ids.openalex | https://openalex.org/W4394653203 |
| fwci | |
| type | preprint |
| title | Algebraic and geometric aspects of rational $Γ$-inner functions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12037 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.964900016784668 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2604 |
| topics[0].subfield.display_name | Applied Mathematics |
| topics[0].display_name | Algebraic and Geometric Analysis |
| topics[1].id | https://openalex.org/T10884 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9549999833106995 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2604 |
| topics[1].subfield.display_name | Applied Mathematics |
| topics[1].display_name | Holomorphic and Operator Theory |
| topics[2].id | https://openalex.org/T12396 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9362999796867371 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2608 |
| topics[2].subfield.display_name | Geometry and Topology |
| topics[2].display_name | Advanced Differential Equations and Dynamical Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C33923547 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5212677121162415 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[0].display_name | Mathematics |
| concepts[1].id | https://openalex.org/C9376300 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4733334183692932 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q168817 |
| concepts[1].display_name | Algebraic number |
| concepts[2].id | https://openalex.org/C136119220 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4119487702846527 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1000660 |
| concepts[2].display_name | Algebra over a field |
| concepts[3].id | https://openalex.org/C202444582 |
| concepts[3].level | 1 |
| concepts[3].score | 0.376406192779541 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[3].display_name | Pure mathematics |
| concepts[4].id | https://openalex.org/C144237770 |
| concepts[4].level | 1 |
| concepts[4].score | 0.34279197454452515 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q747534 |
| concepts[4].display_name | Mathematical economics |
| concepts[5].id | https://openalex.org/C134306372 |
| concepts[5].level | 1 |
| concepts[5].score | 0.1224716305732727 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[5].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/mathematics |
| keywords[0].score | 0.5212677121162415 |
| keywords[0].display_name | Mathematics |
| keywords[1].id | https://openalex.org/keywords/algebraic-number |
| keywords[1].score | 0.4733334183692932 |
| keywords[1].display_name | Algebraic number |
| keywords[2].id | https://openalex.org/keywords/algebra-over-a-field |
| keywords[2].score | 0.4119487702846527 |
| keywords[2].display_name | Algebra over a field |
| keywords[3].id | https://openalex.org/keywords/pure-mathematics |
| keywords[3].score | 0.376406192779541 |
| keywords[3].display_name | Pure mathematics |
| keywords[4].id | https://openalex.org/keywords/mathematical-economics |
| keywords[4].score | 0.34279197454452515 |
| keywords[4].display_name | Mathematical economics |
| keywords[5].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[5].score | 0.1224716305732727 |
| keywords[5].display_name | Mathematical analysis |
| language | en |
| locations[0].id | doi:10.48550/arxiv.1502.04216 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.48550/arxiv.1502.04216 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5049940095 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jim Agler |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jim Agler |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5029152804 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5488-9840 |
| authorships[1].author.display_name | Zinaida A. Lykova |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zinaida A. Lykova |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5103195996 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2707-1450 |
| authorships[2].author.display_name | N. J. Young |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Nicholas J. Young |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.48550/arxiv.1502.04216 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Algebraic and geometric aspects of rational $Γ$-inner functions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12037 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.964900016784668 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2604 |
| primary_topic.subfield.display_name | Applied Mathematics |
| primary_topic.display_name | Algebraic and Geometric Analysis |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W2142036596, https://openalex.org/W2072657027, https://openalex.org/W2600246793, https://openalex.org/W4238204885 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2016 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.48550/arxiv.1502.04216 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.48550/arxiv.1502.04216 |
| primary_location.id | doi:10.48550/arxiv.1502.04216 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.48550/arxiv.1502.04216 |
| publication_date | 2015-02-14 |
| publication_year | 2015 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 17, 26, 37 |
| abstract_inverted_index.We | 52 |
| abstract_inverted_index.\[ | 2 |
| abstract_inverted_index.\] | 10 |
| abstract_inverted_index.an | 58 |
| abstract_inverted_index.is | 25, 41, 47 |
| abstract_inverted_index.it | 15, 35 |
| abstract_inverted_index.of | 20, 78, 85 |
| abstract_inverted_index.to | 30, 56, 72, 81 |
| abstract_inverted_index.1\} | 7 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.all | 50 |
| abstract_inverted_index.and | 34, 60 |
| abstract_inverted_index.for | 64 |
| abstract_inverted_index.has | 11, 16, 36 |
| abstract_inverted_index.its | 22 |
| abstract_inverted_index.map | 75 |
| abstract_inverted_index.set | 1 |
| abstract_inverted_index.the | 31, 42, 65, 69, 76, 79, 82 |
| abstract_inverted_index.$Γ$ | 73 |
| abstract_inverted_index.band | 33 |
| abstract_inverted_index.disc | 71, 80 |
| abstract_inverted_index.from | 68 |
| abstract_inverted_index.maps | 67 |
| abstract_inverted_index.only | 43 |
| abstract_inverted_index.that | 46, 74 |
| abstract_inverted_index.this | 54 |
| abstract_inverted_index.unit | 70 |
| abstract_inverted_index.$Γ$. | 86 |
| abstract_inverted_index.group | 19 |
| abstract_inverted_index.ruled | 27 |
| abstract_inverted_index.under | 49 |
| abstract_inverted_index.which | 40 |
| abstract_inverted_index.theory | 63 |
| abstract_inverted_index.Möbius | 32 |
| abstract_inverted_index.\subset | 8 |
| abstract_inverted_index.complex | 44 |
| abstract_inverted_index.develop | 57 |
| abstract_inverted_index.exploit | 53 |
| abstract_inverted_index.special | 38 |
| abstract_inverted_index.surface | 28 |
| abstract_inverted_index.boundary | 24, 77, 84 |
| abstract_inverted_index.def}{=}} | 4 |
| abstract_inverted_index.detailed | 61 |
| abstract_inverted_index.explicit | 59 |
| abstract_inverted_index.geodesic | 45 |
| abstract_inverted_index.geometry | 55 |
| abstract_inverted_index.rational | 66 |
| abstract_inverted_index.1,|w|\leq | 6 |
| abstract_inverted_index.invariant | 48 |
| abstract_inverted_index.structure | 62 |
| abstract_inverted_index.intriguing | 12 |
| abstract_inverted_index.subvariety | 39 |
| abstract_inverted_index.3-parameter | 18 |
| abstract_inverted_index.properties; | 14 |
| abstract_inverted_index.homeomorphic | 29 |
| abstract_inverted_index.distinguished | 23, 83 |
| abstract_inverted_index.automorphisms, | 21 |
| abstract_inverted_index.automorphisms. | 51 |
| abstract_inverted_index.{\mathbb{C}}^2 | 9 |
| abstract_inverted_index.Γ{\stackrel{\rm | 3 |
| abstract_inverted_index.complex-geometric | 13 |
| abstract_inverted_index.\{(z+w,zw):|z|\leq | 5 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |