Algebraic Machine Learning for Robotic Garment Unfolding Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.64117/simposioscea.v1i1.35
The demand for robots capable of performing assistive tasks has increased due to the need to support people in various environments, such as healthcare and domestic settings. However, among all possible tasks, those involving the manipulation of deformable objects—such as fabrics—pose a greater challenge. This work presents an implementation of robotic cloth manipulation using the TIAGo++ robot and algebraic machine learning (AML) algorithms. These algorithms allow for the definition of rules that are constructed from the model’s inputs and outputs during training. AML is applied as a regression problem to estimate the optimal pick and release points of the folded cloth. Then, using an RGB-D camera, the 3D positions of these points are obtained, and a manipulation routine is executed to unfold the cloth. The point estimation in the image has been evaluated by comparison with a standard convolutional neural network. Finally, experiments were conducted on the complete folding task—comprising both perception and manipulation—demonstrating the effectiveness of the proposed implementation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.64117/simposioscea.v1i1.35
- https://ingmec.ual.es/ojs/index.php/RBVM25/article/download/35/49
- OA Status
- bronze
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411487550
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411487550Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.64117/simposioscea.v1i1.35Digital Object Identifier
- Title
-
Algebraic Machine Learning for Robotic Garment UnfoldingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-03Full publication date if available
- Authors
-
Francisco José Naranjo Campos, Juan G. Victores, Carlos Balaguer, Alberto JardónList of authors in order
- Landing page
-
https://doi.org/10.64117/simposioscea.v1i1.35Publisher landing page
- PDF URL
-
https://ingmec.ual.es/ojs/index.php/RBVM25/article/download/35/49Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://ingmec.ual.es/ojs/index.php/RBVM25/article/download/35/49Direct OA link when available
- Concepts
-
Computer science, Task (project management), Robot, Artificial intelligence, Convolutional neural network, Point (geometry), Perception, Computer vision, Machine learning, Mathematics, Engineering, Systems engineering, Neuroscience, Biology, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411487550 |
|---|---|
| doi | https://doi.org/10.64117/simposioscea.v1i1.35 |
| ids.doi | https://doi.org/10.64117/simposioscea.v1i1.35 |
| ids.openalex | https://openalex.org/W4411487550 |
| fwci | 0.0 |
| type | article |
| title | Algebraic Machine Learning for Robotic Garment Unfolding |
| biblio.issue | 1 |
| biblio.volume | 1 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11245 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9592999815940857 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | Advanced Numerical Analysis Techniques |
| topics[1].id | https://openalex.org/T10653 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9140999913215637 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Robot Manipulation and Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7188473343849182 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2780451532 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6708599328994751 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[1].display_name | Task (project management) |
| concepts[2].id | https://openalex.org/C90509273 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6134457588195801 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[2].display_name | Robot |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6103604435920715 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C81363708 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5822331309318542 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[4].display_name | Convolutional neural network |
| concepts[5].id | https://openalex.org/C28719098 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5072872042655945 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q44946 |
| concepts[5].display_name | Point (geometry) |
| concepts[6].id | https://openalex.org/C26760741 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4372625946998596 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q160402 |
| concepts[6].display_name | Perception |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.39882412552833557 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3959607481956482 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.11123695969581604 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.08816277980804443 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C201995342 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[11].display_name | Systems engineering |
| concepts[12].id | https://openalex.org/C169760540 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[12].display_name | Neuroscience |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| concepts[14].id | https://openalex.org/C2524010 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[14].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7188473343849182 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/task |
| keywords[1].score | 0.6708599328994751 |
| keywords[1].display_name | Task (project management) |
| keywords[2].id | https://openalex.org/keywords/robot |
| keywords[2].score | 0.6134457588195801 |
| keywords[2].display_name | Robot |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6103604435920715 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[4].score | 0.5822331309318542 |
| keywords[4].display_name | Convolutional neural network |
| keywords[5].id | https://openalex.org/keywords/point |
| keywords[5].score | 0.5072872042655945 |
| keywords[5].display_name | Point (geometry) |
| keywords[6].id | https://openalex.org/keywords/perception |
| keywords[6].score | 0.4372625946998596 |
| keywords[6].display_name | Perception |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.39882412552833557 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.3959607481956482 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.11123695969581604 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.08816277980804443 |
| keywords[10].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.64117/simposioscea.v1i1.35 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S5407049574 |
| locations[0].source.issn | 3081-5002 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 3081-5002 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Simposios del Comité Español de Automática (CEA) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://ingmec.ual.es/ojs/index.php/RBVM25/article/download/35/49 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Simposios del Comité Español de Automática (CEA) |
| locations[0].landing_page_url | https://doi.org/10.64117/simposioscea.v1i1.35 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5012014597 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Francisco José Naranjo Campos |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Francisco José Naranjo Campos |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5054568937 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3080-3467 |
| authorships[1].author.display_name | Juan G. Victores |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Juan Carlos González Victores |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5038098758 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4864-4625 |
| authorships[2].author.display_name | Carlos Balaguer |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Carlos Balaguer |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5037126066 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3734-7492 |
| authorships[3].author.display_name | Alberto Jardón |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Alberto Jardón Huete |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ingmec.ual.es/ojs/index.php/RBVM25/article/download/35/49 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Algebraic Machine Learning for Robotic Garment Unfolding |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11245 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9592999815940857 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | Advanced Numerical Analysis Techniques |
| related_works | https://openalex.org/W4391621807, https://openalex.org/W4321487865, https://openalex.org/W4313906399, https://openalex.org/W4391621790, https://openalex.org/W4239306820, https://openalex.org/W4391266461, https://openalex.org/W4392646554, https://openalex.org/W2598946408, https://openalex.org/W3213722473, https://openalex.org/W2110944602 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.64117/simposioscea.v1i1.35 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S5407049574 |
| best_oa_location.source.issn | 3081-5002 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 3081-5002 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Simposios del Comité Español de Automática (CEA) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ingmec.ual.es/ojs/index.php/RBVM25/article/download/35/49 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Simposios del Comité Español de Automática (CEA) |
| best_oa_location.landing_page_url | https://doi.org/10.64117/simposioscea.v1i1.35 |
| primary_location.id | doi:10.64117/simposioscea.v1i1.35 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S5407049574 |
| primary_location.source.issn | 3081-5002 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 3081-5002 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Simposios del Comité Español de Automática (CEA) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://ingmec.ual.es/ojs/index.php/RBVM25/article/download/35/49 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Simposios del Comité Español de Automática (CEA) |
| primary_location.landing_page_url | https://doi.org/10.64117/simposioscea.v1i1.35 |
| publication_date | 2025-06-03 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 41, 86, 115, 136 |
| abstract_inverted_index.3D | 107 |
| abstract_inverted_index.an | 47, 103 |
| abstract_inverted_index.as | 22, 39, 85 |
| abstract_inverted_index.by | 133 |
| abstract_inverted_index.in | 18, 127 |
| abstract_inverted_index.is | 83, 118 |
| abstract_inverted_index.of | 5, 36, 49, 69, 97, 109, 156 |
| abstract_inverted_index.on | 145 |
| abstract_inverted_index.to | 12, 15, 89, 120 |
| abstract_inverted_index.AML | 82 |
| abstract_inverted_index.The | 0, 124 |
| abstract_inverted_index.all | 29 |
| abstract_inverted_index.and | 24, 57, 78, 94, 114, 152 |
| abstract_inverted_index.are | 72, 112 |
| abstract_inverted_index.due | 11 |
| abstract_inverted_index.for | 2, 66 |
| abstract_inverted_index.has | 9, 130 |
| abstract_inverted_index.the | 13, 34, 54, 67, 75, 91, 98, 106, 122, 128, 146, 154, 157 |
| abstract_inverted_index.This | 44 |
| abstract_inverted_index.been | 131 |
| abstract_inverted_index.both | 150 |
| abstract_inverted_index.from | 74 |
| abstract_inverted_index.need | 14 |
| abstract_inverted_index.pick | 93 |
| abstract_inverted_index.such | 21 |
| abstract_inverted_index.that | 71 |
| abstract_inverted_index.were | 143 |
| abstract_inverted_index.with | 135 |
| abstract_inverted_index.work | 45 |
| abstract_inverted_index.(AML) | 61 |
| abstract_inverted_index.RGB-D | 104 |
| abstract_inverted_index.Then, | 101 |
| abstract_inverted_index.These | 63 |
| abstract_inverted_index.allow | 65 |
| abstract_inverted_index.among | 28 |
| abstract_inverted_index.cloth | 51 |
| abstract_inverted_index.image | 129 |
| abstract_inverted_index.point | 125 |
| abstract_inverted_index.robot | 56 |
| abstract_inverted_index.rules | 70 |
| abstract_inverted_index.tasks | 8 |
| abstract_inverted_index.these | 110 |
| abstract_inverted_index.those | 32 |
| abstract_inverted_index.using | 53, 102 |
| abstract_inverted_index.cloth. | 100, 123 |
| abstract_inverted_index.demand | 1 |
| abstract_inverted_index.during | 80 |
| abstract_inverted_index.folded | 99 |
| abstract_inverted_index.inputs | 77 |
| abstract_inverted_index.neural | 139 |
| abstract_inverted_index.people | 17 |
| abstract_inverted_index.points | 96, 111 |
| abstract_inverted_index.robots | 3 |
| abstract_inverted_index.tasks, | 31 |
| abstract_inverted_index.unfold | 121 |
| abstract_inverted_index.TIAGo++ | 55 |
| abstract_inverted_index.applied | 84 |
| abstract_inverted_index.camera, | 105 |
| abstract_inverted_index.capable | 4 |
| abstract_inverted_index.folding | 148 |
| abstract_inverted_index.greater | 42 |
| abstract_inverted_index.machine | 59 |
| abstract_inverted_index.optimal | 92 |
| abstract_inverted_index.outputs | 79 |
| abstract_inverted_index.problem | 88 |
| abstract_inverted_index.release | 95 |
| abstract_inverted_index.robotic | 50 |
| abstract_inverted_index.routine | 117 |
| abstract_inverted_index.support | 16 |
| abstract_inverted_index.various | 19 |
| abstract_inverted_index.Finally, | 141 |
| abstract_inverted_index.However, | 27 |
| abstract_inverted_index.complete | 147 |
| abstract_inverted_index.domestic | 25 |
| abstract_inverted_index.estimate | 90 |
| abstract_inverted_index.executed | 119 |
| abstract_inverted_index.learning | 60 |
| abstract_inverted_index.network. | 140 |
| abstract_inverted_index.possible | 30 |
| abstract_inverted_index.presents | 46 |
| abstract_inverted_index.proposed | 158 |
| abstract_inverted_index.standard | 137 |
| abstract_inverted_index.algebraic | 58 |
| abstract_inverted_index.assistive | 7 |
| abstract_inverted_index.conducted | 144 |
| abstract_inverted_index.evaluated | 132 |
| abstract_inverted_index.increased | 10 |
| abstract_inverted_index.involving | 33 |
| abstract_inverted_index.model’s | 76 |
| abstract_inverted_index.obtained, | 113 |
| abstract_inverted_index.positions | 108 |
| abstract_inverted_index.settings. | 26 |
| abstract_inverted_index.training. | 81 |
| abstract_inverted_index.algorithms | 64 |
| abstract_inverted_index.challenge. | 43 |
| abstract_inverted_index.comparison | 134 |
| abstract_inverted_index.definition | 68 |
| abstract_inverted_index.deformable | 37 |
| abstract_inverted_index.estimation | 126 |
| abstract_inverted_index.healthcare | 23 |
| abstract_inverted_index.perception | 151 |
| abstract_inverted_index.performing | 6 |
| abstract_inverted_index.regression | 87 |
| abstract_inverted_index.algorithms. | 62 |
| abstract_inverted_index.constructed | 73 |
| abstract_inverted_index.experiments | 142 |
| abstract_inverted_index.manipulation | 35, 52, 116 |
| abstract_inverted_index.convolutional | 138 |
| abstract_inverted_index.effectiveness | 155 |
| abstract_inverted_index.environments, | 20 |
| abstract_inverted_index.fabrics—pose | 40 |
| abstract_inverted_index.implementation | 48 |
| abstract_inverted_index.objects—such | 38 |
| abstract_inverted_index.implementation. | 159 |
| abstract_inverted_index.task—comprising | 149 |
| abstract_inverted_index.manipulation—demonstrating | 153 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.25866817 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |