Algorithm for image-based biomarker detection for differential diagnosis of Parkinson's disease Article Swipe
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.1016/j.ifacol.2015.09.087
The necessity is greater than ever for a methodology to both diagnose at early stage and evaluate the progression of Parkinson Disease (PD). In this paper, we propose an interesting and innovative methodology for pattern recognition based automated individual-level clinical diagnosis of PD. It makes use of a unique combination of machine learning tools and statistical tools. The methodology comprises of three major steps. First, pre-processed brain Magnetic Resonance Images (MRI) are modelled using Self-Organizing Map (SOM) for feature generation. Second, Fisher-Discriminant Ratio (FDR) is used to reveal distinctive feature(s). Third, Least Squares Support Vector Machine (LS-SVM) is used for Individual-level patient classification. The applicability of the proposed methodology has been demonstrated using 831 T1-weighted MRIs obtained from Parkinson's Progression Markers Initiative (PPMI) database. We have achieved classification accuracy of up to 97% for differential diagnosis of PD with confidence interval of 99.9%. This method is particularly suited for diagnosing patients in early stages of the disease, i.e., patients in age of 31- 60 years. In the present landscape, Brain MRI is routinely performed to assist PD diagnosis in clinical settings. Thus, the induction of the proposed methodology as a decision support system could make a significant impact on treatment strategies especially by aiding early-stage disease diagnosis.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.ifacol.2015.09.087
- OA Status
- diamond
- Cited By
- 10
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2482366780
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2482366780Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.ifacol.2015.09.087Digital Object Identifier
- Title
-
Algorithm for image-based biomarker detection for differential diagnosis of Parkinson's diseaseWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-01-01Full publication date if available
- Authors
-
Gurpreet Singh, S. LakshminarayananList of authors in order
- Landing page
-
https://doi.org/10.1016/j.ifacol.2015.09.087Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.ifacol.2015.09.087Direct OA link when available
- Concepts
-
Support vector machine, Artificial intelligence, Linear discriminant analysis, Machine learning, Pattern recognition (psychology), Parkinson's disease, Feature (linguistics), Computer science, Magnetic resonance imaging, Stage (stratigraphy), Confidence interval, Differential diagnosis, Disease, Medicine, Radiology, Pathology, Internal medicine, Paleontology, Linguistics, Philosophy, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 3, 2022: 1, 2020: 1, 2018: 1Per-year citation counts (last 5 years)
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2482366780 |
|---|---|
| doi | https://doi.org/10.1016/j.ifacol.2015.09.087 |
| ids.doi | https://doi.org/10.1016/j.ifacol.2015.09.087 |
| ids.mag | 2482366780 |
| ids.openalex | https://openalex.org/W2482366780 |
| fwci | 0.71755998 |
| type | article |
| title | Algorithm for image-based biomarker detection for differential diagnosis of Parkinson's disease |
| biblio.issue | 8 |
| biblio.volume | 48 |
| biblio.last_page | 923 |
| biblio.first_page | 918 |
| topics[0].id | https://openalex.org/T10085 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2728 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Parkinson's Disease Mechanisms and Treatments |
| topics[1].id | https://openalex.org/T10919 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9639000296592712 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2728 |
| topics[1].subfield.display_name | Neurology |
| topics[1].display_name | Neurological disorders and treatments |
| topics[2].id | https://openalex.org/T12610 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9215999841690063 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | RNA regulation and disease |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C12267149 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7312970161437988 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[0].display_name | Support vector machine |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6690048575401306 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C69738355 |
| concepts[2].level | 2 |
| concepts[2].score | 0.660849392414093 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1228929 |
| concepts[2].display_name | Linear discriminant analysis |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5411602258682251 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5399127006530762 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C2779734285 |
| concepts[5].level | 3 |
| concepts[5].score | 0.539359986782074 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11085 |
| concepts[5].display_name | Parkinson's disease |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5248346924781799 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.501173734664917 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C143409427 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4763389229774475 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q161238 |
| concepts[8].display_name | Magnetic resonance imaging |
| concepts[9].id | https://openalex.org/C146357865 |
| concepts[9].level | 2 |
| concepts[9].score | 0.46490299701690674 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1123245 |
| concepts[9].display_name | Stage (stratigraphy) |
| concepts[10].id | https://openalex.org/C44249647 |
| concepts[10].level | 2 |
| concepts[10].score | 0.45928359031677246 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q208498 |
| concepts[10].display_name | Confidence interval |
| concepts[11].id | https://openalex.org/C2780801072 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42051222920417786 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q837512 |
| concepts[11].display_name | Differential diagnosis |
| concepts[12].id | https://openalex.org/C2779134260 |
| concepts[12].level | 2 |
| concepts[12].score | 0.396342396736145 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[12].display_name | Disease |
| concepts[13].id | https://openalex.org/C71924100 |
| concepts[13].level | 0 |
| concepts[13].score | 0.29453253746032715 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[13].display_name | Medicine |
| concepts[14].id | https://openalex.org/C126838900 |
| concepts[14].level | 1 |
| concepts[14].score | 0.23127058148384094 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[14].display_name | Radiology |
| concepts[15].id | https://openalex.org/C142724271 |
| concepts[15].level | 1 |
| concepts[15].score | 0.1683191955089569 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[15].display_name | Pathology |
| concepts[16].id | https://openalex.org/C126322002 |
| concepts[16].level | 1 |
| concepts[16].score | 0.10600492358207703 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[16].display_name | Internal medicine |
| concepts[17].id | https://openalex.org/C151730666 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[17].display_name | Paleontology |
| concepts[18].id | https://openalex.org/C41895202 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[18].display_name | Linguistics |
| concepts[19].id | https://openalex.org/C138885662 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[19].display_name | Philosophy |
| concepts[20].id | https://openalex.org/C86803240 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[20].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/support-vector-machine |
| keywords[0].score | 0.7312970161437988 |
| keywords[0].display_name | Support vector machine |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6690048575401306 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/linear-discriminant-analysis |
| keywords[2].score | 0.660849392414093 |
| keywords[2].display_name | Linear discriminant analysis |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.5411602258682251 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.5399127006530762 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/parkinsons-disease |
| keywords[5].score | 0.539359986782074 |
| keywords[5].display_name | Parkinson's disease |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.5248346924781799 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.501173734664917 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/magnetic-resonance-imaging |
| keywords[8].score | 0.4763389229774475 |
| keywords[8].display_name | Magnetic resonance imaging |
| keywords[9].id | https://openalex.org/keywords/stage |
| keywords[9].score | 0.46490299701690674 |
| keywords[9].display_name | Stage (stratigraphy) |
| keywords[10].id | https://openalex.org/keywords/confidence-interval |
| keywords[10].score | 0.45928359031677246 |
| keywords[10].display_name | Confidence interval |
| keywords[11].id | https://openalex.org/keywords/differential-diagnosis |
| keywords[11].score | 0.42051222920417786 |
| keywords[11].display_name | Differential diagnosis |
| keywords[12].id | https://openalex.org/keywords/disease |
| keywords[12].score | 0.396342396736145 |
| keywords[12].display_name | Disease |
| keywords[13].id | https://openalex.org/keywords/medicine |
| keywords[13].score | 0.29453253746032715 |
| keywords[13].display_name | Medicine |
| keywords[14].id | https://openalex.org/keywords/radiology |
| keywords[14].score | 0.23127058148384094 |
| keywords[14].display_name | Radiology |
| keywords[15].id | https://openalex.org/keywords/pathology |
| keywords[15].score | 0.1683191955089569 |
| keywords[15].display_name | Pathology |
| keywords[16].id | https://openalex.org/keywords/internal-medicine |
| keywords[16].score | 0.10600492358207703 |
| keywords[16].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.1016/j.ifacol.2015.09.087 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898405271 |
| locations[0].source.issn | 2405-8963, 2405-8971 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2405-8963 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IFAC-PapersOnLine |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IFAC-PapersOnLine |
| locations[0].landing_page_url | https://doi.org/10.1016/j.ifacol.2015.09.087 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5052700353 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1481-7241 |
| authorships[0].author.display_name | Gurpreet Singh |
| authorships[0].countries | SG |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I165932596 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585 |
| authorships[0].institutions[0].id | https://openalex.org/I165932596 |
| authorships[0].institutions[0].ror | https://ror.org/01tgyzw49 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I165932596 |
| authorships[0].institutions[0].country_code | SG |
| authorships[0].institutions[0].display_name | National University of Singapore |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gurpreet Singh |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585 |
| authorships[1].author.id | https://openalex.org/A5035749038 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4323-6315 |
| authorships[1].author.display_name | S. Lakshminarayanan |
| authorships[1].countries | SG |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I165932596 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585 |
| authorships[1].institutions[0].id | https://openalex.org/I165932596 |
| authorships[1].institutions[0].ror | https://ror.org/01tgyzw49 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I165932596 |
| authorships[1].institutions[0].country_code | SG |
| authorships[1].institutions[0].display_name | National University of Singapore |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Lakshminarayanan Samavedham |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585 |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.ifacol.2015.09.087 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Algorithm for image-based biomarker detection for differential diagnosis of Parkinson's disease |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10085 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2728 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Parkinson's Disease Mechanisms and Treatments |
| related_works | https://openalex.org/W4402452563, https://openalex.org/W2250488071, https://openalex.org/W2356150353, https://openalex.org/W2090763504, https://openalex.org/W2018643641, https://openalex.org/W2380744779, https://openalex.org/W605998243, https://openalex.org/W2967867994, https://openalex.org/W2469878540, https://openalex.org/W1999647744 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2018 |
| counts_by_year[4].cited_by_count | 1 |
| counts_by_year[5].year | 2017 |
| counts_by_year[5].cited_by_count | 1 |
| counts_by_year[6].year | 2016 |
| counts_by_year[6].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.ifacol.2015.09.087 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898405271 |
| best_oa_location.source.issn | 2405-8963, 2405-8971 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2405-8963 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IFAC-PapersOnLine |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IFAC-PapersOnLine |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.ifacol.2015.09.087 |
| primary_location.id | doi:10.1016/j.ifacol.2015.09.087 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898405271 |
| primary_location.source.issn | 2405-8963, 2405-8971 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2405-8963 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IFAC-PapersOnLine |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IFAC-PapersOnLine |
| primary_location.landing_page_url | https://doi.org/10.1016/j.ifacol.2015.09.087 |
| publication_date | 2015-01-01 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W1994605499, https://openalex.org/W2167969178, https://openalex.org/W2050430957, https://openalex.org/W2125416224, https://openalex.org/W6677898606, https://openalex.org/W1878353308, https://openalex.org/W2015215114, https://openalex.org/W1999873322, https://openalex.org/W2071135389, https://openalex.org/W2070154553, https://openalex.org/W2116496076, https://openalex.org/W2093977564, https://openalex.org/W1978793506, https://openalex.org/W2169366712, https://openalex.org/W2046164046, https://openalex.org/W1982031183, https://openalex.org/W1988494453, https://openalex.org/W2116219487, https://openalex.org/W2037984755, https://openalex.org/W1596717185, https://openalex.org/W2098715930, https://openalex.org/W4214524864, https://openalex.org/W2121742207 |
| referenced_works_count | 23 |
| abstract_inverted_index.a | 7, 47, 189, 195 |
| abstract_inverted_index.60 | 163 |
| abstract_inverted_index.In | 23, 165 |
| abstract_inverted_index.It | 43 |
| abstract_inverted_index.PD | 137, 176 |
| abstract_inverted_index.We | 124 |
| abstract_inverted_index.an | 28 |
| abstract_inverted_index.as | 188 |
| abstract_inverted_index.at | 12 |
| abstract_inverted_index.by | 202 |
| abstract_inverted_index.in | 151, 159, 178 |
| abstract_inverted_index.is | 2, 84, 97, 145, 171 |
| abstract_inverted_index.of | 19, 41, 46, 50, 60, 105, 129, 136, 141, 154, 161, 184 |
| abstract_inverted_index.on | 198 |
| abstract_inverted_index.to | 9, 86, 131, 174 |
| abstract_inverted_index.up | 130 |
| abstract_inverted_index.we | 26 |
| abstract_inverted_index.31- | 162 |
| abstract_inverted_index.831 | 113 |
| abstract_inverted_index.97% | 132 |
| abstract_inverted_index.MRI | 170 |
| abstract_inverted_index.Map | 75 |
| abstract_inverted_index.PD. | 42 |
| abstract_inverted_index.The | 0, 57, 103 |
| abstract_inverted_index.age | 160 |
| abstract_inverted_index.and | 15, 30, 54 |
| abstract_inverted_index.are | 71 |
| abstract_inverted_index.for | 6, 33, 77, 99, 133, 148 |
| abstract_inverted_index.has | 109 |
| abstract_inverted_index.the | 17, 106, 155, 166, 182, 185 |
| abstract_inverted_index.use | 45 |
| abstract_inverted_index.MRIs | 115 |
| abstract_inverted_index.This | 143 |
| abstract_inverted_index.been | 110 |
| abstract_inverted_index.both | 10 |
| abstract_inverted_index.ever | 5 |
| abstract_inverted_index.from | 117 |
| abstract_inverted_index.have | 125 |
| abstract_inverted_index.make | 194 |
| abstract_inverted_index.than | 4 |
| abstract_inverted_index.this | 24 |
| abstract_inverted_index.used | 85, 98 |
| abstract_inverted_index.with | 138 |
| abstract_inverted_index.(FDR) | 83 |
| abstract_inverted_index.(MRI) | 70 |
| abstract_inverted_index.(PD). | 22 |
| abstract_inverted_index.(SOM) | 76 |
| abstract_inverted_index.Brain | 169 |
| abstract_inverted_index.Least | 91 |
| abstract_inverted_index.Ratio | 82 |
| abstract_inverted_index.Thus, | 181 |
| abstract_inverted_index.based | 36 |
| abstract_inverted_index.brain | 66 |
| abstract_inverted_index.could | 193 |
| abstract_inverted_index.early | 13, 152 |
| abstract_inverted_index.i.e., | 157 |
| abstract_inverted_index.major | 62 |
| abstract_inverted_index.makes | 44 |
| abstract_inverted_index.stage | 14 |
| abstract_inverted_index.three | 61 |
| abstract_inverted_index.tools | 53 |
| abstract_inverted_index.using | 73, 112 |
| abstract_inverted_index.(PPMI) | 122 |
| abstract_inverted_index.99.9%. | 142 |
| abstract_inverted_index.First, | 64 |
| abstract_inverted_index.Images | 69 |
| abstract_inverted_index.Third, | 90 |
| abstract_inverted_index.Vector | 94 |
| abstract_inverted_index.aiding | 203 |
| abstract_inverted_index.assist | 175 |
| abstract_inverted_index.impact | 197 |
| abstract_inverted_index.method | 144 |
| abstract_inverted_index.paper, | 25 |
| abstract_inverted_index.reveal | 87 |
| abstract_inverted_index.stages | 153 |
| abstract_inverted_index.steps. | 63 |
| abstract_inverted_index.suited | 147 |
| abstract_inverted_index.system | 192 |
| abstract_inverted_index.tools. | 56 |
| abstract_inverted_index.unique | 48 |
| abstract_inverted_index.years. | 164 |
| abstract_inverted_index.Disease | 21 |
| abstract_inverted_index.Machine | 95 |
| abstract_inverted_index.Markers | 120 |
| abstract_inverted_index.Second, | 80 |
| abstract_inverted_index.Squares | 92 |
| abstract_inverted_index.Support | 93 |
| abstract_inverted_index.disease | 205 |
| abstract_inverted_index.feature | 78 |
| abstract_inverted_index.greater | 3 |
| abstract_inverted_index.machine | 51 |
| abstract_inverted_index.patient | 101 |
| abstract_inverted_index.pattern | 34 |
| abstract_inverted_index.present | 167 |
| abstract_inverted_index.propose | 27 |
| abstract_inverted_index.support | 191 |
| abstract_inverted_index.(LS-SVM) | 96 |
| abstract_inverted_index.Magnetic | 67 |
| abstract_inverted_index.accuracy | 128 |
| abstract_inverted_index.achieved | 126 |
| abstract_inverted_index.clinical | 39, 179 |
| abstract_inverted_index.decision | 190 |
| abstract_inverted_index.diagnose | 11 |
| abstract_inverted_index.disease, | 156 |
| abstract_inverted_index.evaluate | 16 |
| abstract_inverted_index.interval | 140 |
| abstract_inverted_index.learning | 52 |
| abstract_inverted_index.modelled | 72 |
| abstract_inverted_index.obtained | 116 |
| abstract_inverted_index.patients | 150, 158 |
| abstract_inverted_index.proposed | 107, 186 |
| abstract_inverted_index.Parkinson | 20 |
| abstract_inverted_index.Resonance | 68 |
| abstract_inverted_index.automated | 37 |
| abstract_inverted_index.comprises | 59 |
| abstract_inverted_index.database. | 123 |
| abstract_inverted_index.diagnosis | 40, 135, 177 |
| abstract_inverted_index.induction | 183 |
| abstract_inverted_index.necessity | 1 |
| abstract_inverted_index.performed | 173 |
| abstract_inverted_index.routinely | 172 |
| abstract_inverted_index.settings. | 180 |
| abstract_inverted_index.treatment | 199 |
| abstract_inverted_index.Initiative | 121 |
| abstract_inverted_index.confidence | 139 |
| abstract_inverted_index.diagnosing | 149 |
| abstract_inverted_index.diagnosis. | 206 |
| abstract_inverted_index.especially | 201 |
| abstract_inverted_index.innovative | 31 |
| abstract_inverted_index.landscape, | 168 |
| abstract_inverted_index.strategies | 200 |
| abstract_inverted_index.Parkinson's | 118 |
| abstract_inverted_index.Progression | 119 |
| abstract_inverted_index.T1-weighted | 114 |
| abstract_inverted_index.combination | 49 |
| abstract_inverted_index.distinctive | 88 |
| abstract_inverted_index.early-stage | 204 |
| abstract_inverted_index.feature(s). | 89 |
| abstract_inverted_index.generation. | 79 |
| abstract_inverted_index.interesting | 29 |
| abstract_inverted_index.methodology | 8, 32, 58, 108, 187 |
| abstract_inverted_index.progression | 18 |
| abstract_inverted_index.recognition | 35 |
| abstract_inverted_index.significant | 196 |
| abstract_inverted_index.statistical | 55 |
| abstract_inverted_index.demonstrated | 111 |
| abstract_inverted_index.differential | 134 |
| abstract_inverted_index.particularly | 146 |
| abstract_inverted_index.applicability | 104 |
| abstract_inverted_index.pre-processed | 65 |
| abstract_inverted_index.classification | 127 |
| abstract_inverted_index.Self-Organizing | 74 |
| abstract_inverted_index.classification. | 102 |
| abstract_inverted_index.Individual-level | 100 |
| abstract_inverted_index.individual-level | 38 |
| abstract_inverted_index.Fisher-Discriminant | 81 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5035749038 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I165932596 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.6200000047683716 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.73185702 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |