Algorithms for Learning Graphs in Financial Markets Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2012.15410
In the past two decades, the field of applied finance has tremendously benefited from graph theory. As a result, novel methods ranging from asset network estimation to hierarchical asset selection and portfolio allocation are now part of practitioners' toolboxes. In this paper, we investigate the fundamental problem of learning undirected graphical models under Laplacian structural constraints from the point of view of financial market times series data. In particular, we present natural justifications, supported by empirical evidence, for the usage of the Laplacian matrix as a model for the precision matrix of financial assets, while also establishing a direct link that reveals how Laplacian constraints are coupled to meaningful physical interpretations related to the market index factor and to conditional correlations between stocks. Those interpretations lead to a set of guidelines that practitioners should be aware of when estimating graphs in financial markets. In addition, we design numerical algorithms based on the alternating direction method of multipliers to learn undirected, weighted graphs that take into account stylized facts that are intrinsic to financial data such as heavy tails and modularity. We illustrate how to leverage the learned graphs into practical scenarios such as stock time series clustering and foreign exchange network estimation. The proposed graph learning algorithms outperform the state-of-the-art methods in an extensive set of practical experiments. Furthermore, we obtain theoretical and empirical convergence results for the proposed algorithms. Along with the developed methodologies for graph learning in financial markets, we release an R package, called fingraph, accommodating the code and data to obtain all the experimental results.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2012.15410
- https://arxiv.org/pdf/2012.15410
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4287546840
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4287546840Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2012.15410Digital Object Identifier
- Title
-
Algorithms for Learning Graphs in Financial MarketsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-12-31Full publication date if available
- Authors
-
José Vinícius de Miranda Cardoso, Jiaxi Ying, Daniel P. PalomarList of authors in order
- Landing page
-
https://arxiv.org/abs/2012.15410Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2012.15410Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2012.15410Direct OA link when available
- Concepts
-
Computer science, Stylized fact, Financial market, Financial networks, Machine learning, Leverage (statistics), Finance, Artificial intelligence, Stock market, Theoretical computer science, Econometrics, Mathematics, Economics, Systemic risk, Macroeconomics, Biology, Horse, Paleontology, Financial crisisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4287546840 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2012.15410 |
| ids.doi | https://doi.org/10.48550/arxiv.2012.15410 |
| ids.openalex | https://openalex.org/W4287546840 |
| fwci | |
| type | preprint |
| title | Algorithms for Learning Graphs in Financial Markets |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11270 |
| topics[0].field.id | https://openalex.org/fields/20 |
| topics[0].field.display_name | Economics, Econometrics and Finance |
| topics[0].score | 0.9922999739646912 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2002 |
| topics[0].subfield.display_name | Economics and Econometrics |
| topics[0].display_name | Complex Systems and Time Series Analysis |
| topics[1].id | https://openalex.org/T10320 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9868999719619751 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Applications |
| topics[2].id | https://openalex.org/T11326 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9787999987602234 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Stock Market Forecasting Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6446330547332764 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C38935604 |
| concepts[1].level | 2 |
| concepts[1].score | 0.559429407119751 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4330363 |
| concepts[1].display_name | Stylized fact |
| concepts[2].id | https://openalex.org/C19244329 |
| concepts[2].level | 2 |
| concepts[2].score | 0.47313132882118225 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q208697 |
| concepts[2].display_name | Financial market |
| concepts[3].id | https://openalex.org/C2776760741 |
| concepts[3].level | 4 |
| concepts[3].score | 0.4642983078956604 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q25325235 |
| concepts[3].display_name | Financial networks |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4627663195133209 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C153083717 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4541068971157074 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[5].display_name | Leverage (statistics) |
| concepts[6].id | https://openalex.org/C10138342 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4309339225292206 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[6].display_name | Finance |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.41741201281547546 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C2780299701 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4153103232383728 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q475000 |
| concepts[8].display_name | Stock market |
| concepts[9].id | https://openalex.org/C80444323 |
| concepts[9].level | 1 |
| concepts[9].score | 0.36010241508483887 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[9].display_name | Theoretical computer science |
| concepts[10].id | https://openalex.org/C149782125 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3581324815750122 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[10].display_name | Econometrics |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.16824573278427124 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C162324750 |
| concepts[12].level | 0 |
| concepts[12].score | 0.16220048069953918 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[12].display_name | Economics |
| concepts[13].id | https://openalex.org/C144587487 |
| concepts[13].level | 3 |
| concepts[13].score | 0.11126303672790527 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1369234 |
| concepts[13].display_name | Systemic risk |
| concepts[14].id | https://openalex.org/C139719470 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q39680 |
| concepts[14].display_name | Macroeconomics |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| concepts[16].id | https://openalex.org/C2780762169 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5905368 |
| concepts[16].display_name | Horse |
| concepts[17].id | https://openalex.org/C151730666 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[17].display_name | Paleontology |
| concepts[18].id | https://openalex.org/C2778300220 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q114380 |
| concepts[18].display_name | Financial crisis |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6446330547332764 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/stylized-fact |
| keywords[1].score | 0.559429407119751 |
| keywords[1].display_name | Stylized fact |
| keywords[2].id | https://openalex.org/keywords/financial-market |
| keywords[2].score | 0.47313132882118225 |
| keywords[2].display_name | Financial market |
| keywords[3].id | https://openalex.org/keywords/financial-networks |
| keywords[3].score | 0.4642983078956604 |
| keywords[3].display_name | Financial networks |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.4627663195133209 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/leverage |
| keywords[5].score | 0.4541068971157074 |
| keywords[5].display_name | Leverage (statistics) |
| keywords[6].id | https://openalex.org/keywords/finance |
| keywords[6].score | 0.4309339225292206 |
| keywords[6].display_name | Finance |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.41741201281547546 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/stock-market |
| keywords[8].score | 0.4153103232383728 |
| keywords[8].display_name | Stock market |
| keywords[9].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[9].score | 0.36010241508483887 |
| keywords[9].display_name | Theoretical computer science |
| keywords[10].id | https://openalex.org/keywords/econometrics |
| keywords[10].score | 0.3581324815750122 |
| keywords[10].display_name | Econometrics |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.16824573278427124 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/economics |
| keywords[12].score | 0.16220048069953918 |
| keywords[12].display_name | Economics |
| keywords[13].id | https://openalex.org/keywords/systemic-risk |
| keywords[13].score | 0.11126303672790527 |
| keywords[13].display_name | Systemic risk |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2012.15410 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2012.15410 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2012.15410 |
| locations[1].id | doi:10.48550/arxiv.2012.15410 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2012.15410 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5035887854 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5410-5551 |
| authorships[0].author.display_name | José Vinícius de Miranda Cardoso |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Cardoso, José Vinícius de Miranda |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5088040610 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2102-6683 |
| authorships[1].author.display_name | Jiaxi Ying |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ying, Jiaxi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5054606088 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5250-4874 |
| authorships[2].author.display_name | Daniel P. Palomar |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Palomar, Daniel Perez |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2012.15410 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Algorithms for Learning Graphs in Financial Markets |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11270 |
| primary_topic.field.id | https://openalex.org/fields/20 |
| primary_topic.field.display_name | Economics, Econometrics and Finance |
| primary_topic.score | 0.9922999739646912 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2002 |
| primary_topic.subfield.display_name | Economics and Econometrics |
| primary_topic.display_name | Complex Systems and Time Series Analysis |
| related_works | https://openalex.org/W2903382730, https://openalex.org/W2146021494, https://openalex.org/W2494900715, https://openalex.org/W2023875268, https://openalex.org/W1653514497, https://openalex.org/W2645942849, https://openalex.org/W2198140688, https://openalex.org/W2483843797, https://openalex.org/W2150997926, https://openalex.org/W2899488590 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2012.15410 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2012.15410 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2012.15410 |
| primary_location.id | pmh:oai:arXiv.org:2012.15410 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2012.15410 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2012.15410 |
| publication_date | 2020-12-31 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.R | 244 |
| abstract_inverted_index.a | 17, 85, 97, 127 |
| abstract_inverted_index.As | 16 |
| abstract_inverted_index.In | 0, 39, 67, 143 |
| abstract_inverted_index.We | 180 |
| abstract_inverted_index.an | 212, 243 |
| abstract_inverted_index.as | 84, 175, 192 |
| abstract_inverted_index.be | 134 |
| abstract_inverted_index.by | 74 |
| abstract_inverted_index.in | 140, 211, 238 |
| abstract_inverted_index.of | 7, 36, 47, 59, 61, 80, 91, 129, 136, 155, 215 |
| abstract_inverted_index.on | 150 |
| abstract_inverted_index.to | 26, 107, 112, 118, 126, 157, 171, 183, 253 |
| abstract_inverted_index.we | 42, 69, 145, 219, 241 |
| abstract_inverted_index.The | 202 |
| abstract_inverted_index.all | 255 |
| abstract_inverted_index.and | 30, 117, 178, 197, 222, 251 |
| abstract_inverted_index.are | 33, 105, 169 |
| abstract_inverted_index.for | 77, 87, 226, 235 |
| abstract_inverted_index.has | 10 |
| abstract_inverted_index.how | 102, 182 |
| abstract_inverted_index.now | 34 |
| abstract_inverted_index.set | 128, 214 |
| abstract_inverted_index.the | 1, 5, 44, 57, 78, 81, 88, 113, 151, 185, 208, 227, 232, 249, 256 |
| abstract_inverted_index.two | 3 |
| abstract_inverted_index.also | 95 |
| abstract_inverted_index.code | 250 |
| abstract_inverted_index.data | 173, 252 |
| abstract_inverted_index.from | 13, 22, 56 |
| abstract_inverted_index.into | 164, 188 |
| abstract_inverted_index.lead | 125 |
| abstract_inverted_index.link | 99 |
| abstract_inverted_index.part | 35 |
| abstract_inverted_index.past | 2 |
| abstract_inverted_index.such | 174, 191 |
| abstract_inverted_index.take | 163 |
| abstract_inverted_index.that | 100, 131, 162, 168 |
| abstract_inverted_index.this | 40 |
| abstract_inverted_index.time | 194 |
| abstract_inverted_index.view | 60 |
| abstract_inverted_index.when | 137 |
| abstract_inverted_index.with | 231 |
| abstract_inverted_index.Along | 230 |
| abstract_inverted_index.Those | 123 |
| abstract_inverted_index.asset | 23, 28 |
| abstract_inverted_index.aware | 135 |
| abstract_inverted_index.based | 149 |
| abstract_inverted_index.data. | 66 |
| abstract_inverted_index.facts | 167 |
| abstract_inverted_index.field | 6 |
| abstract_inverted_index.graph | 14, 204, 236 |
| abstract_inverted_index.heavy | 176 |
| abstract_inverted_index.index | 115 |
| abstract_inverted_index.learn | 158 |
| abstract_inverted_index.model | 86 |
| abstract_inverted_index.novel | 19 |
| abstract_inverted_index.point | 58 |
| abstract_inverted_index.stock | 193 |
| abstract_inverted_index.tails | 177 |
| abstract_inverted_index.times | 64 |
| abstract_inverted_index.under | 52 |
| abstract_inverted_index.usage | 79 |
| abstract_inverted_index.while | 94 |
| abstract_inverted_index.called | 246 |
| abstract_inverted_index.design | 146 |
| abstract_inverted_index.direct | 98 |
| abstract_inverted_index.factor | 116 |
| abstract_inverted_index.graphs | 139, 161, 187 |
| abstract_inverted_index.market | 63, 114 |
| abstract_inverted_index.matrix | 83, 90 |
| abstract_inverted_index.method | 154 |
| abstract_inverted_index.models | 51 |
| abstract_inverted_index.obtain | 220, 254 |
| abstract_inverted_index.paper, | 41 |
| abstract_inverted_index.series | 65, 195 |
| abstract_inverted_index.should | 133 |
| abstract_inverted_index.account | 165 |
| abstract_inverted_index.applied | 8 |
| abstract_inverted_index.assets, | 93 |
| abstract_inverted_index.between | 121 |
| abstract_inverted_index.coupled | 106 |
| abstract_inverted_index.finance | 9 |
| abstract_inverted_index.foreign | 198 |
| abstract_inverted_index.learned | 186 |
| abstract_inverted_index.methods | 20, 210 |
| abstract_inverted_index.natural | 71 |
| abstract_inverted_index.network | 24, 200 |
| abstract_inverted_index.present | 70 |
| abstract_inverted_index.problem | 46 |
| abstract_inverted_index.ranging | 21 |
| abstract_inverted_index.related | 111 |
| abstract_inverted_index.release | 242 |
| abstract_inverted_index.result, | 18 |
| abstract_inverted_index.results | 225 |
| abstract_inverted_index.reveals | 101 |
| abstract_inverted_index.stocks. | 122 |
| abstract_inverted_index.theory. | 15 |
| abstract_inverted_index.decades, | 4 |
| abstract_inverted_index.exchange | 199 |
| abstract_inverted_index.learning | 48, 205, 237 |
| abstract_inverted_index.leverage | 184 |
| abstract_inverted_index.markets, | 240 |
| abstract_inverted_index.markets. | 142 |
| abstract_inverted_index.package, | 245 |
| abstract_inverted_index.physical | 109 |
| abstract_inverted_index.proposed | 203, 228 |
| abstract_inverted_index.results. | 258 |
| abstract_inverted_index.stylized | 166 |
| abstract_inverted_index.weighted | 160 |
| abstract_inverted_index.Laplacian | 53, 82, 103 |
| abstract_inverted_index.addition, | 144 |
| abstract_inverted_index.benefited | 12 |
| abstract_inverted_index.developed | 233 |
| abstract_inverted_index.direction | 153 |
| abstract_inverted_index.empirical | 75, 223 |
| abstract_inverted_index.evidence, | 76 |
| abstract_inverted_index.extensive | 213 |
| abstract_inverted_index.financial | 62, 92, 141, 172, 239 |
| abstract_inverted_index.fingraph, | 247 |
| abstract_inverted_index.graphical | 50 |
| abstract_inverted_index.intrinsic | 170 |
| abstract_inverted_index.numerical | 147 |
| abstract_inverted_index.portfolio | 31 |
| abstract_inverted_index.practical | 189, 216 |
| abstract_inverted_index.precision | 89 |
| abstract_inverted_index.scenarios | 190 |
| abstract_inverted_index.selection | 29 |
| abstract_inverted_index.supported | 73 |
| abstract_inverted_index.algorithms | 148, 206 |
| abstract_inverted_index.allocation | 32 |
| abstract_inverted_index.clustering | 196 |
| abstract_inverted_index.estimating | 138 |
| abstract_inverted_index.estimation | 25 |
| abstract_inverted_index.guidelines | 130 |
| abstract_inverted_index.illustrate | 181 |
| abstract_inverted_index.meaningful | 108 |
| abstract_inverted_index.outperform | 207 |
| abstract_inverted_index.structural | 54 |
| abstract_inverted_index.toolboxes. | 38 |
| abstract_inverted_index.undirected | 49 |
| abstract_inverted_index.algorithms. | 229 |
| abstract_inverted_index.alternating | 152 |
| abstract_inverted_index.conditional | 119 |
| abstract_inverted_index.constraints | 55, 104 |
| abstract_inverted_index.convergence | 224 |
| abstract_inverted_index.estimation. | 201 |
| abstract_inverted_index.fundamental | 45 |
| abstract_inverted_index.investigate | 43 |
| abstract_inverted_index.modularity. | 179 |
| abstract_inverted_index.multipliers | 156 |
| abstract_inverted_index.particular, | 68 |
| abstract_inverted_index.theoretical | 221 |
| abstract_inverted_index.undirected, | 159 |
| abstract_inverted_index.Furthermore, | 218 |
| abstract_inverted_index.correlations | 120 |
| abstract_inverted_index.establishing | 96 |
| abstract_inverted_index.experimental | 257 |
| abstract_inverted_index.experiments. | 217 |
| abstract_inverted_index.hierarchical | 27 |
| abstract_inverted_index.tremendously | 11 |
| abstract_inverted_index.accommodating | 248 |
| abstract_inverted_index.methodologies | 234 |
| abstract_inverted_index.practitioners | 132 |
| abstract_inverted_index.practitioners' | 37 |
| abstract_inverted_index.interpretations | 110, 124 |
| abstract_inverted_index.justifications, | 72 |
| abstract_inverted_index.state-of-the-art | 209 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.5299999713897705 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| citation_normalized_percentile |