AlignFusionNet: Efficient Cross-Modal Alignment and Fusion for 3D Semantic Occupancy Prediction Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/access.2025.3589858
The environmental perception system is a critical component of autonomous vehicles, and multimodal perception systems significantly enhance perception capabilities by integrating camera and LiDAR data. This paper proposes a novel framework, AlignFusionNet. It effectively combines image and point cloud data to construct an occupancy network, thereby improving target detection and representation. The framework introduces two innovative modules: a point-level data alignment module based on geometric transformations and an enhanced fusion module utilizing cross-attention mechanisms. These modules achieve precise point-level alignment and seamless feature fusion between point clouds and RGB images. Experiments on the nuScenes-Occupancy dataset demonstrate that the proposed AlignFusionNet outperforms baseline methods, achieving a significant 15.9% improvement in mIoU and a 4% increase in IoU. Compared to the previous state-of-the-art method, OccGen, mIoU is improved by 5.9%. Further qualitative visualization analysis shows that the proposed method achieves higher representation accuracy for small objects.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2025.3589858
- OA Status
- gold
- Cited By
- 8
- References
- 88
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412619188
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412619188Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2025.3589858Digital Object Identifier
- Title
-
AlignFusionNet: Efficient Cross-Modal Alignment and Fusion for 3D Semantic Occupancy PredictionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Ziyi Xu, Li Qi, Hai-En Du, Jia‐Qi Yang, Zhenglin ChenList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2025.3589858Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2025.3589858Direct OA link when available
- Concepts
-
Occupancy, Computer science, Modal, Fusion, Artificial intelligence, Natural language processing, Data mining, Engineering, Philosophy, Linguistics, Architectural engineering, Chemistry, Polymer chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8Per-year citation counts (last 5 years)
- References (count)
-
88Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412619188 |
|---|---|
| doi | https://doi.org/10.1109/access.2025.3589858 |
| ids.doi | https://doi.org/10.1109/access.2025.3589858 |
| ids.openalex | https://openalex.org/W4412619188 |
| fwci | 32.73406802 |
| type | article |
| title | AlignFusionNet: Efficient Cross-Modal Alignment and Fusion for 3D Semantic Occupancy Prediction |
| awards[0].id | https://openalex.org/G3063979137 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | RCBS20221008093129082 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 125015 |
| biblio.first_page | 125003 |
| topics[0].id | https://openalex.org/T10719 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9986000061035156 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | 3D Shape Modeling and Analysis |
| topics[1].id | https://openalex.org/T14339 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9975000023841858 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image Processing and 3D Reconstruction |
| topics[2].id | https://openalex.org/T10812 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9966999888420105 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Human Pose and Action Recognition |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C160331591 |
| concepts[0].level | 2 |
| concepts[0].score | 0.795007050037384 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7075743 |
| concepts[0].display_name | Occupancy |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7335389256477356 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C71139939 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6968486905097961 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q910194 |
| concepts[2].display_name | Modal |
| concepts[3].id | https://openalex.org/C158525013 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5550965666770935 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2593739 |
| concepts[3].display_name | Fusion |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.47234049439430237 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C204321447 |
| concepts[5].level | 1 |
| concepts[5].score | 0.32673364877700806 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[5].display_name | Natural language processing |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3234905004501343 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.08114111423492432 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C138885662 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[8].display_name | Philosophy |
| concepts[9].id | https://openalex.org/C41895202 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[9].display_name | Linguistics |
| concepts[10].id | https://openalex.org/C170154142 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q150737 |
| concepts[10].display_name | Architectural engineering |
| concepts[11].id | https://openalex.org/C185592680 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[11].display_name | Chemistry |
| concepts[12].id | https://openalex.org/C188027245 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q750446 |
| concepts[12].display_name | Polymer chemistry |
| keywords[0].id | https://openalex.org/keywords/occupancy |
| keywords[0].score | 0.795007050037384 |
| keywords[0].display_name | Occupancy |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7335389256477356 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/modal |
| keywords[2].score | 0.6968486905097961 |
| keywords[2].display_name | Modal |
| keywords[3].id | https://openalex.org/keywords/fusion |
| keywords[3].score | 0.5550965666770935 |
| keywords[3].display_name | Fusion |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.47234049439430237 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/natural-language-processing |
| keywords[5].score | 0.32673364877700806 |
| keywords[5].display_name | Natural language processing |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.3234905004501343 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.08114111423492432 |
| keywords[7].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1109/access.2025.3589858 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2025.3589858 |
| locations[1].id | pmh:oai:doaj.org/article:5d5ea1ab61a441aeaa45c3b9cf435201 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 13, Pp 125003-125015 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/5d5ea1ab61a441aeaa45c3b9cf435201 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100578683 |
| authorships[0].author.orcid | https://orcid.org/0009-0006-8192-5188 |
| authorships[0].author.display_name | Ziyi Xu |
| authorships[0].countries | MO |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I204512498 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, University of Macau, Macau, China |
| authorships[0].institutions[0].id | https://openalex.org/I204512498 |
| authorships[0].institutions[0].ror | https://ror.org/01r4q9n85 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I204512498 |
| authorships[0].institutions[0].country_code | MO |
| authorships[0].institutions[0].display_name | University of Macau |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ziyi Xu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electrical and Computer Engineering, University of Macau, Macau, China |
| authorships[1].author.id | https://openalex.org/A5040592135 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6646-8528 |
| authorships[1].author.display_name | Li Qi |
| authorships[1].countries | MO |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I204512498 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, University of Macau, Macau, China |
| authorships[1].institutions[0].id | https://openalex.org/I204512498 |
| authorships[1].institutions[0].ror | https://ror.org/01r4q9n85 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I204512498 |
| authorships[1].institutions[0].country_code | MO |
| authorships[1].institutions[0].display_name | University of Macau |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Legan Qi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical and Computer Engineering, University of Macau, Macau, China |
| authorships[2].author.id | https://openalex.org/A5080342949 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4055-0264 |
| authorships[2].author.display_name | Hai-En Du |
| authorships[2].countries | MO |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204512498 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, University of Macau, Macau, China |
| authorships[2].institutions[0].id | https://openalex.org/I204512498 |
| authorships[2].institutions[0].ror | https://ror.org/01r4q9n85 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I204512498 |
| authorships[2].institutions[0].country_code | MO |
| authorships[2].institutions[0].display_name | University of Macau |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hongzhou Du |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical and Computer Engineering, University of Macau, Macau, China |
| authorships[3].author.id | https://openalex.org/A5057301657 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6331-0829 |
| authorships[3].author.display_name | Jia‐Qi Yang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I27781120 |
| authorships[3].affiliations[0].raw_affiliation_string | Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China |
| authorships[3].institutions[0].id | https://openalex.org/I27781120 |
| authorships[3].institutions[0].ror | https://ror.org/00rd5t069 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I27781120 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Wenzhou Medical University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jiaqi Yang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China |
| authorships[4].author.id | https://openalex.org/A5102750075 |
| authorships[4].author.orcid | https://orcid.org/0009-0001-0301-2598 |
| authorships[4].author.display_name | Zhenglin Chen |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I27781120 |
| authorships[4].affiliations[0].raw_affiliation_string | Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China |
| authorships[4].institutions[0].id | https://openalex.org/I27781120 |
| authorships[4].institutions[0].ror | https://ror.org/00rd5t069 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I27781120 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Wenzhou Medical University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Zhenglin Chen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2025.3589858 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | AlignFusionNet: Efficient Cross-Modal Alignment and Fusion for 3D Semantic Occupancy Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10719 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9986000061035156 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | 3D Shape Modeling and Analysis |
| related_works | https://openalex.org/W4282043467, https://openalex.org/W2105697914, https://openalex.org/W2202433167, https://openalex.org/W3093197249, https://openalex.org/W1540010871, https://openalex.org/W3023979140, https://openalex.org/W3177545769, https://openalex.org/W2904068067, https://openalex.org/W1565491139, https://openalex.org/W4297618682 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2025.3589858 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2025.3589858 |
| primary_location.id | doi:10.1109/access.2025.3589858 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2025.3589858 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4387245323, https://openalex.org/W4391935169, https://openalex.org/W4400646215, https://openalex.org/W3034653753, https://openalex.org/W4404132941, https://openalex.org/W3094632837, https://openalex.org/W4390075007, https://openalex.org/W4390872444, https://openalex.org/W6852775642, https://openalex.org/W6850325899, https://openalex.org/W3165793043, https://openalex.org/W3217305714, https://openalex.org/W4386132187, https://openalex.org/W2980040548, https://openalex.org/W2557465155, https://openalex.org/W2345333930, https://openalex.org/W3215584334, https://openalex.org/W4312894406, https://openalex.org/W4312641958, https://openalex.org/W4386083035, https://openalex.org/W6858648908, https://openalex.org/W4405785410, https://openalex.org/W6861012058, https://openalex.org/W6879916760, https://openalex.org/W6857295974, https://openalex.org/W4390872638, https://openalex.org/W4390873564, https://openalex.org/W2336416123, https://openalex.org/W4220795836, https://openalex.org/W4386065389, https://openalex.org/W4393159171, https://openalex.org/W4391013633, https://openalex.org/W4393159587, https://openalex.org/W6857082823, https://openalex.org/W4389666133, https://openalex.org/W6858172842, https://openalex.org/W4399207465, https://openalex.org/W4383108631, https://openalex.org/W4312564076, https://openalex.org/W2963926543, https://openalex.org/W4383097531, https://openalex.org/W6780075094, https://openalex.org/W4405717395, https://openalex.org/W4311763314, https://openalex.org/W4383899715, https://openalex.org/W4403295699, https://openalex.org/W4376870884, https://openalex.org/W3170030651, https://openalex.org/W3108426750, https://openalex.org/W3135991645, https://openalex.org/W6838956374, https://openalex.org/W3172863135, https://openalex.org/W4403730128, https://openalex.org/W3035574168, https://openalex.org/W4225986494, https://openalex.org/W6842385943, https://openalex.org/W4383112451, https://openalex.org/W4390590924, https://openalex.org/W2767290858, https://openalex.org/W2619383789, https://openalex.org/W2587989515, https://openalex.org/W4386768890, https://openalex.org/W3168463823, https://openalex.org/W3035172746, https://openalex.org/W4402727396, https://openalex.org/W4396214375, https://openalex.org/W6811230113, https://openalex.org/W3034868495, https://openalex.org/W3035308182, https://openalex.org/W3126856052, https://openalex.org/W3174692508, https://openalex.org/W4394708612, https://openalex.org/W4404725701, https://openalex.org/W2991216808, https://openalex.org/W3198790326, https://openalex.org/W4385574728, https://openalex.org/W4386160116, https://openalex.org/W4394621877, https://openalex.org/W4402753757, https://openalex.org/W4410342737, https://openalex.org/W4401414722, https://openalex.org/W4226305814, https://openalex.org/W3036452913, https://openalex.org/W4405784929, https://openalex.org/W4401414004, https://openalex.org/W4396596928, https://openalex.org/W4405907309, https://openalex.org/W4390961328 |
| referenced_works_count | 88 |
| abstract_inverted_index.a | 5, 28, 57, 104, 111 |
| abstract_inverted_index.4% | 112 |
| abstract_inverted_index.It | 32 |
| abstract_inverted_index.an | 42, 67 |
| abstract_inverted_index.by | 19, 126 |
| abstract_inverted_index.in | 108, 114 |
| abstract_inverted_index.is | 4, 124 |
| abstract_inverted_index.of | 8 |
| abstract_inverted_index.on | 63, 91 |
| abstract_inverted_index.to | 40, 117 |
| abstract_inverted_index.RGB | 88 |
| abstract_inverted_index.The | 0, 51 |
| abstract_inverted_index.and | 11, 22, 36, 49, 66, 80, 87, 110 |
| abstract_inverted_index.for | 141 |
| abstract_inverted_index.the | 92, 97, 118, 134 |
| abstract_inverted_index.two | 54 |
| abstract_inverted_index.IoU. | 115 |
| abstract_inverted_index.This | 25 |
| abstract_inverted_index.data | 39, 59 |
| abstract_inverted_index.mIoU | 109, 123 |
| abstract_inverted_index.that | 96, 133 |
| abstract_inverted_index.15.9% | 106 |
| abstract_inverted_index.5.9%. | 127 |
| abstract_inverted_index.LiDAR | 23 |
| abstract_inverted_index.These | 74 |
| abstract_inverted_index.based | 62 |
| abstract_inverted_index.cloud | 38 |
| abstract_inverted_index.data. | 24 |
| abstract_inverted_index.image | 35 |
| abstract_inverted_index.novel | 29 |
| abstract_inverted_index.paper | 26 |
| abstract_inverted_index.point | 37, 85 |
| abstract_inverted_index.shows | 132 |
| abstract_inverted_index.small | 142 |
| abstract_inverted_index.camera | 21 |
| abstract_inverted_index.clouds | 86 |
| abstract_inverted_index.fusion | 69, 83 |
| abstract_inverted_index.higher | 138 |
| abstract_inverted_index.method | 136 |
| abstract_inverted_index.module | 61, 70 |
| abstract_inverted_index.system | 3 |
| abstract_inverted_index.target | 47 |
| abstract_inverted_index.Further | 128 |
| abstract_inverted_index.OccGen, | 122 |
| abstract_inverted_index.achieve | 76 |
| abstract_inverted_index.between | 84 |
| abstract_inverted_index.dataset | 94 |
| abstract_inverted_index.enhance | 16 |
| abstract_inverted_index.feature | 82 |
| abstract_inverted_index.images. | 89 |
| abstract_inverted_index.method, | 121 |
| abstract_inverted_index.modules | 75 |
| abstract_inverted_index.precise | 77 |
| abstract_inverted_index.systems | 14 |
| abstract_inverted_index.thereby | 45 |
| abstract_inverted_index.Compared | 116 |
| abstract_inverted_index.accuracy | 140 |
| abstract_inverted_index.achieves | 137 |
| abstract_inverted_index.analysis | 131 |
| abstract_inverted_index.baseline | 101 |
| abstract_inverted_index.combines | 34 |
| abstract_inverted_index.critical | 6 |
| abstract_inverted_index.enhanced | 68 |
| abstract_inverted_index.improved | 125 |
| abstract_inverted_index.increase | 113 |
| abstract_inverted_index.methods, | 102 |
| abstract_inverted_index.modules: | 56 |
| abstract_inverted_index.network, | 44 |
| abstract_inverted_index.objects. | 143 |
| abstract_inverted_index.previous | 119 |
| abstract_inverted_index.proposed | 98, 135 |
| abstract_inverted_index.proposes | 27 |
| abstract_inverted_index.seamless | 81 |
| abstract_inverted_index.achieving | 103 |
| abstract_inverted_index.alignment | 60, 79 |
| abstract_inverted_index.component | 7 |
| abstract_inverted_index.construct | 41 |
| abstract_inverted_index.detection | 48 |
| abstract_inverted_index.framework | 52 |
| abstract_inverted_index.geometric | 64 |
| abstract_inverted_index.improving | 46 |
| abstract_inverted_index.occupancy | 43 |
| abstract_inverted_index.utilizing | 71 |
| abstract_inverted_index.vehicles, | 10 |
| abstract_inverted_index.autonomous | 9 |
| abstract_inverted_index.framework, | 30 |
| abstract_inverted_index.innovative | 55 |
| abstract_inverted_index.introduces | 53 |
| abstract_inverted_index.multimodal | 12 |
| abstract_inverted_index.perception | 2, 13, 17 |
| abstract_inverted_index.Experiments | 90 |
| abstract_inverted_index.demonstrate | 95 |
| abstract_inverted_index.effectively | 33 |
| abstract_inverted_index.improvement | 107 |
| abstract_inverted_index.integrating | 20 |
| abstract_inverted_index.mechanisms. | 73 |
| abstract_inverted_index.outperforms | 100 |
| abstract_inverted_index.point-level | 58, 78 |
| abstract_inverted_index.qualitative | 129 |
| abstract_inverted_index.significant | 105 |
| abstract_inverted_index.capabilities | 18 |
| abstract_inverted_index.environmental | 1 |
| abstract_inverted_index.significantly | 15 |
| abstract_inverted_index.visualization | 130 |
| abstract_inverted_index.AlignFusionNet | 99 |
| abstract_inverted_index.representation | 139 |
| abstract_inverted_index.AlignFusionNet. | 31 |
| abstract_inverted_index.cross-attention | 72 |
| abstract_inverted_index.representation. | 50 |
| abstract_inverted_index.transformations | 65 |
| abstract_inverted_index.state-of-the-art | 120 |
| abstract_inverted_index.nuScenes-Occupancy | 93 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.99565333 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |