Alignment of auditory artificial networks with massive individual fMRI brain data leads to generalisable improvements in brain encoding and downstream tasks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1162/imag_a_00525
Artificial neural networks trained in the field of artificial intelligence (AI) have emerged as key tools to model brain processes, sparking the idea of aligning network representations with brain dynamics to enhance performance on AI tasks. While this concept has gained support in the visual domain, we investigate here the feasibility of creating auditory artificial neural models directly aligned with individual brain activity. This objective raises major computational challenges, as models have to be trained directly with brain data, which is typically collected at a much smaller scale than data used to train AI models. We aimed to answer two key questions: (1) Can brain alignment of auditory models lead to improved brain encoding for novel, previously unseen stimuli? (2) Can brain alignment lead to generalisable representations of auditory signals that are useful for solving a variety of complex auditory tasks? To answer these questions, we relied on two massive datasets: a deep phenotyping dataset from the Courtois neuronal modelling project, where six subjects watched four seasons (36 h) of the Friends TV series in functional magnetic resonance imaging and the HEAR benchmark, a large battery of downstream auditory tasks. We fine-tuned SoundNet, a small pretrained convolutional neural network with ~2.5 M parameters. Aligning SoundNet with brain data from three seasons of Friends led to substantial improvement in brain encoding in the fourth season, extending beyond auditory and visual cortices. We also observed consistent performance gains on the HEAR benchmark, particularly for tasks with limited training data, where brain-aligned models performed comparably with the best-performing models regardless of size. We finally compared individual and group models, finding that individual models often matched or outperformed group models in both brain encoding and downstream task performance, highlighting the data efficiency of fine-tuning with individual brain data. Our results demonstrate the feasibility of aligning artificial neural network representations with individual brain activity during auditory processing, and suggest that this alignment is particularly beneficial for tasks with limited training data. Future research is needed to establish whether larger models can achieve even better performance and whether the observed gains extend to other tasks, particularly in the context of few-shot learning.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1162/imag_a_00525
- OA Status
- diamond
- Cited By
- 1
- References
- 62
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408560767
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408560767Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1162/imag_a_00525Digital Object Identifier
- Title
-
Alignment of auditory artificial networks with massive individual fMRI brain data leads to generalisable improvements in brain encoding and downstream tasksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Maëlle Freteault, Maximilien Le Clei, Loïc Tetrel, Pierre Bellec, Nicolas FarrugiaList of authors in order
- Landing page
-
https://doi.org/10.1162/imag_a_00525Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1162/imag_a_00525Direct OA link when available
- Concepts
-
Computer science, Encoding (memory), Brain activity and meditation, Benchmark (surveying), Functional magnetic resonance imaging, Artificial neural network, Artificial intelligence, Convolutional neural network, Psychology, Neuroscience, Electroencephalography, Geography, GeodesyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
62Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408560767 |
|---|---|
| doi | https://doi.org/10.1162/imag_a_00525 |
| ids.doi | https://doi.org/10.1162/imag_a_00525 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40800971 |
| ids.openalex | https://openalex.org/W4408560767 |
| fwci | 4.0838049 |
| type | article |
| title | Alignment of auditory artificial networks with massive individual fMRI brain data leads to generalisable improvements in brain encoding and downstream tasks |
| biblio.issue | |
| biblio.volume | 3 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10788 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9976000189781189 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Neuroscience and Music Perception |
| topics[1].id | https://openalex.org/T10283 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9973999857902527 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | Hearing Loss and Rehabilitation |
| topics[2].id | https://openalex.org/T10581 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9958999752998352 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Neural dynamics and brain function |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6070283651351929 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C125411270 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5838149785995483 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q18653 |
| concepts[1].display_name | Encoding (memory) |
| concepts[2].id | https://openalex.org/C120843803 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5592787265777588 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q4955807 |
| concepts[2].display_name | Brain activity and meditation |
| concepts[3].id | https://openalex.org/C185798385 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5235333442687988 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[3].display_name | Benchmark (surveying) |
| concepts[4].id | https://openalex.org/C2779226451 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4926953613758087 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q903809 |
| concepts[4].display_name | Functional magnetic resonance imaging |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46135425567626953 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.44690248370170593 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C81363708 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4148254692554474 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[7].display_name | Convolutional neural network |
| concepts[8].id | https://openalex.org/C15744967 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2638249397277832 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[8].display_name | Psychology |
| concepts[9].id | https://openalex.org/C169760540 |
| concepts[9].level | 1 |
| concepts[9].score | 0.25199735164642334 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[9].display_name | Neuroscience |
| concepts[10].id | https://openalex.org/C522805319 |
| concepts[10].level | 2 |
| concepts[10].score | 0.21889838576316833 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[10].display_name | Electroencephalography |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C13280743 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[12].display_name | Geodesy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6070283651351929 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/encoding |
| keywords[1].score | 0.5838149785995483 |
| keywords[1].display_name | Encoding (memory) |
| keywords[2].id | https://openalex.org/keywords/brain-activity-and-meditation |
| keywords[2].score | 0.5592787265777588 |
| keywords[2].display_name | Brain activity and meditation |
| keywords[3].id | https://openalex.org/keywords/benchmark |
| keywords[3].score | 0.5235333442687988 |
| keywords[3].display_name | Benchmark (surveying) |
| keywords[4].id | https://openalex.org/keywords/functional-magnetic-resonance-imaging |
| keywords[4].score | 0.4926953613758087 |
| keywords[4].display_name | Functional magnetic resonance imaging |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.46135425567626953 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.44690248370170593 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[7].score | 0.4148254692554474 |
| keywords[7].display_name | Convolutional neural network |
| keywords[8].id | https://openalex.org/keywords/psychology |
| keywords[8].score | 0.2638249397277832 |
| keywords[8].display_name | Psychology |
| keywords[9].id | https://openalex.org/keywords/neuroscience |
| keywords[9].score | 0.25199735164642334 |
| keywords[9].display_name | Neuroscience |
| keywords[10].id | https://openalex.org/keywords/electroencephalography |
| keywords[10].score | 0.21889838576316833 |
| keywords[10].display_name | Electroencephalography |
| language | en |
| locations[0].id | doi:10.1162/imag_a_00525 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387291234 |
| locations[0].source.issn | 2837-6056 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2837-6056 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Imaging Neuroscience |
| locations[0].source.host_organization | https://openalex.org/P4310315718 |
| locations[0].source.host_organization_name | The MIT Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315718 |
| locations[0].source.host_organization_lineage_names | The MIT Press |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Imaging Neuroscience |
| locations[0].landing_page_url | https://doi.org/10.1162/imag_a_00525 |
| locations[1].id | pmid:40800971 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Imaging neuroscience (Cambridge, Mass.) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40800971 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:12319826 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Imaging Neurosci (Camb) |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12319826 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5007241902 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-7950-0744 |
| authorships[0].author.display_name | Maëlle Freteault |
| authorships[0].countries | CA, FR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I70931966 |
| authorships[0].affiliations[0].raw_affiliation_string | Université de Montréal, Montréal, QC, Canada |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210126907 |
| authorships[0].affiliations[1].raw_affiliation_string | Centre de Recherche de L’Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I1294671590, https://openalex.org/I4210123702, https://openalex.org/I4210127572 |
| authorships[0].affiliations[2].raw_affiliation_string | IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238, Brest, France |
| authorships[0].institutions[0].id | https://openalex.org/I4210126907 |
| authorships[0].institutions[0].ror | https://ror.org/031z68d90 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210126907 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | Institut Universitaire de Gériatrie de Montréal |
| authorships[0].institutions[1].id | https://openalex.org/I70931966 |
| authorships[0].institutions[1].ror | https://ror.org/0161xgx34 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I70931966 |
| authorships[0].institutions[1].country_code | CA |
| authorships[0].institutions[1].display_name | Université de Montréal |
| authorships[0].institutions[2].id | https://openalex.org/I1294671590 |
| authorships[0].institutions[2].ror | https://ror.org/02feahw73 |
| authorships[0].institutions[2].type | government |
| authorships[0].institutions[2].lineage | https://openalex.org/I1294671590 |
| authorships[0].institutions[2].country_code | FR |
| authorships[0].institutions[2].display_name | Centre National de la Recherche Scientifique |
| authorships[0].institutions[3].id | https://openalex.org/I4210127572 |
| authorships[0].institutions[3].ror | https://ror.org/030hj3061 |
| authorships[0].institutions[3].type | education |
| authorships[0].institutions[3].lineage | https://openalex.org/I205703379, https://openalex.org/I4210127572, https://openalex.org/I4210145102 |
| authorships[0].institutions[3].country_code | FR |
| authorships[0].institutions[3].display_name | IMT Atlantique |
| authorships[0].institutions[4].id | https://openalex.org/I4210123702 |
| authorships[0].institutions[4].ror | https://ror.org/0266kfd37 |
| authorships[0].institutions[4].type | facility |
| authorships[0].institutions[4].lineage | https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I180375564, https://openalex.org/I201181511, https://openalex.org/I205703379, https://openalex.org/I2802204017, https://openalex.org/I4210123702, https://openalex.org/I4210127572, https://openalex.org/I4210145102, https://openalex.org/I4210145102, https://openalex.org/I4210159245, https://openalex.org/I4412460332 |
| authorships[0].institutions[4].country_code | FR |
| authorships[0].institutions[4].display_name | Laboratoire des Sciences et Techniques de l’Information de la Communication et de la Connaissance |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Maelle Freteault |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Centre de Recherche de L’Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada, IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238, Brest, France, Université de Montréal, Montréal, QC, Canada |
| authorships[1].author.id | https://openalex.org/A5053865792 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9831-6657 |
| authorships[1].author.display_name | Maximilien Le Clei |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210126907 |
| authorships[1].affiliations[0].raw_affiliation_string | Centre de Recherche de L’Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada |
| authorships[1].institutions[0].id | https://openalex.org/I4210126907 |
| authorships[1].institutions[0].ror | https://ror.org/031z68d90 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210126907 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | Institut Universitaire de Gériatrie de Montréal |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Maximilien Le Clei |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Centre de Recherche de L’Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada |
| authorships[2].author.id | https://openalex.org/A5037994005 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1501-331X |
| authorships[2].author.display_name | Loïc Tetrel |
| authorships[2].countries | CA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210126907 |
| authorships[2].affiliations[0].raw_affiliation_string | Centre de Recherche de L’Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada |
| authorships[2].affiliations[1].raw_affiliation_string | Kitware Europe, Villeurbanne, France |
| authorships[2].institutions[0].id | https://openalex.org/I4210126907 |
| authorships[2].institutions[0].ror | https://ror.org/031z68d90 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210126907 |
| authorships[2].institutions[0].country_code | CA |
| authorships[2].institutions[0].display_name | Institut Universitaire de Gériatrie de Montréal |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Loic Tetrel |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Centre de Recherche de L’Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada, Kitware Europe, Villeurbanne, France |
| authorships[3].author.id | https://openalex.org/A5009114084 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9111-0699 |
| authorships[3].author.display_name | Pierre Bellec |
| authorships[3].countries | CA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I70931966 |
| authorships[3].affiliations[0].raw_affiliation_string | Université de Montréal, Montréal, QC, Canada |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I4210126907 |
| authorships[3].affiliations[1].raw_affiliation_string | Centre de Recherche de L’Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada |
| authorships[3].institutions[0].id | https://openalex.org/I4210126907 |
| authorships[3].institutions[0].ror | https://ror.org/031z68d90 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210126907 |
| authorships[3].institutions[0].country_code | CA |
| authorships[3].institutions[0].display_name | Institut Universitaire de Gériatrie de Montréal |
| authorships[3].institutions[1].id | https://openalex.org/I70931966 |
| authorships[3].institutions[1].ror | https://ror.org/0161xgx34 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I70931966 |
| authorships[3].institutions[1].country_code | CA |
| authorships[3].institutions[1].display_name | Université de Montréal |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pierre Bellec |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Centre de Recherche de L’Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada, Université de Montréal, Montréal, QC, Canada |
| authorships[4].author.id | https://openalex.org/A5073128964 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1159-3513 |
| authorships[4].author.display_name | Nicolas Farrugia |
| authorships[4].countries | FR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1294671590, https://openalex.org/I4210123702, https://openalex.org/I4210127572 |
| authorships[4].affiliations[0].raw_affiliation_string | IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238, Brest, France |
| authorships[4].institutions[0].id | https://openalex.org/I1294671590 |
| authorships[4].institutions[0].ror | https://ror.org/02feahw73 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I1294671590 |
| authorships[4].institutions[0].country_code | FR |
| authorships[4].institutions[0].display_name | Centre National de la Recherche Scientifique |
| authorships[4].institutions[1].id | https://openalex.org/I4210127572 |
| authorships[4].institutions[1].ror | https://ror.org/030hj3061 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I205703379, https://openalex.org/I4210127572, https://openalex.org/I4210145102 |
| authorships[4].institutions[1].country_code | FR |
| authorships[4].institutions[1].display_name | IMT Atlantique |
| authorships[4].institutions[2].id | https://openalex.org/I4210123702 |
| authorships[4].institutions[2].ror | https://ror.org/0266kfd37 |
| authorships[4].institutions[2].type | facility |
| authorships[4].institutions[2].lineage | https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I180375564, https://openalex.org/I201181511, https://openalex.org/I205703379, https://openalex.org/I2802204017, https://openalex.org/I4210123702, https://openalex.org/I4210127572, https://openalex.org/I4210145102, https://openalex.org/I4210145102, https://openalex.org/I4210159245, https://openalex.org/I4412460332 |
| authorships[4].institutions[2].country_code | FR |
| authorships[4].institutions[2].display_name | Laboratoire des Sciences et Techniques de l’Information de la Communication et de la Connaissance |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Nicolas Farrugia |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238, Brest, France |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1162/imag_a_00525 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-03-19T00:00:00 |
| display_name | Alignment of auditory artificial networks with massive individual fMRI brain data leads to generalisable improvements in brain encoding and downstream tasks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-23T05:10:03.516525 |
| primary_topic.id | https://openalex.org/T10788 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9976000189781189 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Neuroscience and Music Perception |
| related_works | https://openalex.org/W128114763, https://openalex.org/W2042800611, https://openalex.org/W2051472919, https://openalex.org/W4386213410, https://openalex.org/W2072179998, https://openalex.org/W2371524820, https://openalex.org/W2534241281, https://openalex.org/W2003739479, https://openalex.org/W1987060659, https://openalex.org/W37707946 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1162/imag_a_00525 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387291234 |
| best_oa_location.source.issn | 2837-6056 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2837-6056 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Imaging Neuroscience |
| best_oa_location.source.host_organization | https://openalex.org/P4310315718 |
| best_oa_location.source.host_organization_name | The MIT Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315718 |
| best_oa_location.source.host_organization_lineage_names | The MIT Press |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Imaging Neuroscience |
| best_oa_location.landing_page_url | https://doi.org/10.1162/imag_a_00525 |
| primary_location.id | doi:10.1162/imag_a_00525 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387291234 |
| primary_location.source.issn | 2837-6056 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2837-6056 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Imaging Neuroscience |
| primary_location.source.host_organization | https://openalex.org/P4310315718 |
| primary_location.source.host_organization_name | The MIT Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315718 |
| primary_location.source.host_organization_lineage_names | The MIT Press |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Imaging Neuroscience |
| primary_location.landing_page_url | https://doi.org/10.1162/imag_a_00525 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2151591509, https://openalex.org/W4200613736, https://openalex.org/W2619697695, https://openalex.org/W6729831399, https://openalex.org/W6780218876, https://openalex.org/W6846800256, https://openalex.org/W2146881061, https://openalex.org/W2163922914, https://openalex.org/W1596515083, https://openalex.org/W1987653094, https://openalex.org/W4322766928, https://openalex.org/W3015371781, https://openalex.org/W3041046627, https://openalex.org/W6755207826, https://openalex.org/W6736723571, https://openalex.org/W2951583631, https://openalex.org/W6773080915, https://openalex.org/W4205689591, https://openalex.org/W3016970897, https://openalex.org/W2593116425, https://openalex.org/W4327569188, https://openalex.org/W3205743929, https://openalex.org/W2741941708, https://openalex.org/W2158308356, https://openalex.org/W2802442632, https://openalex.org/W4210885747, https://openalex.org/W6858202927, https://openalex.org/W2800311957, https://openalex.org/W3094550259, https://openalex.org/W4311803092, https://openalex.org/W6684191040, https://openalex.org/W1965555277, https://openalex.org/W4221149036, https://openalex.org/W4221131958, https://openalex.org/W2775794021, https://openalex.org/W4404993825, https://openalex.org/W2000791900, https://openalex.org/W4403572329, https://openalex.org/W3127523145, https://openalex.org/W2945310593, https://openalex.org/W3028543194, https://openalex.org/W4400184505, https://openalex.org/W2052666245, https://openalex.org/W2026903785, https://openalex.org/W4372260403, https://openalex.org/W6754825039, https://openalex.org/W6767096107, https://openalex.org/W3127176114, https://openalex.org/W6765318754, https://openalex.org/W4385757400, https://openalex.org/W4402912936, https://openalex.org/W4379744027, https://openalex.org/W6858341137, https://openalex.org/W6809947431, https://openalex.org/W2773623840, https://openalex.org/W2145039217, https://openalex.org/W3172353912, https://openalex.org/W4392927049, https://openalex.org/W6885196408, https://openalex.org/W1969179810, https://openalex.org/W2110000143, https://openalex.org/W2058616551 |
| referenced_works_count | 62 |
| abstract_inverted_index.M | 202 |
| abstract_inverted_index.a | 85, 136, 152, 184, 194 |
| abstract_inverted_index.AI | 35, 94 |
| abstract_inverted_index.TV | 173 |
| abstract_inverted_index.To | 142 |
| abstract_inverted_index.We | 96, 191, 231, 260 |
| abstract_inverted_index.as | 14, 70 |
| abstract_inverted_index.at | 84 |
| abstract_inverted_index.be | 74 |
| abstract_inverted_index.h) | 169 |
| abstract_inverted_index.in | 5, 43, 175, 218, 221, 277, 351 |
| abstract_inverted_index.is | 81, 318, 329 |
| abstract_inverted_index.of | 8, 24, 52, 107, 128, 138, 170, 187, 212, 258, 289, 300, 354 |
| abstract_inverted_index.on | 34, 148, 237 |
| abstract_inverted_index.or | 273 |
| abstract_inverted_index.to | 17, 31, 73, 92, 98, 111, 125, 215, 331, 347 |
| abstract_inverted_index.we | 47, 146 |
| abstract_inverted_index.(1) | 103 |
| abstract_inverted_index.(2) | 120 |
| abstract_inverted_index.(36 | 168 |
| abstract_inverted_index.Can | 104, 121 |
| abstract_inverted_index.Our | 295 |
| abstract_inverted_index.and | 180, 228, 264, 281, 313, 341 |
| abstract_inverted_index.are | 132 |
| abstract_inverted_index.can | 336 |
| abstract_inverted_index.for | 115, 134, 242, 321 |
| abstract_inverted_index.has | 40 |
| abstract_inverted_index.key | 15, 101 |
| abstract_inverted_index.led | 214 |
| abstract_inverted_index.six | 163 |
| abstract_inverted_index.the | 6, 22, 44, 50, 157, 171, 181, 222, 238, 254, 286, 298, 343, 352 |
| abstract_inverted_index.two | 100, 149 |
| abstract_inverted_index.(AI) | 11 |
| abstract_inverted_index.HEAR | 182, 239 |
| abstract_inverted_index.This | 64 |
| abstract_inverted_index.also | 232 |
| abstract_inverted_index.both | 278 |
| abstract_inverted_index.data | 90, 208, 287 |
| abstract_inverted_index.deep | 153 |
| abstract_inverted_index.even | 338 |
| abstract_inverted_index.four | 166 |
| abstract_inverted_index.from | 156, 209 |
| abstract_inverted_index.have | 12, 72 |
| abstract_inverted_index.here | 49 |
| abstract_inverted_index.idea | 23 |
| abstract_inverted_index.lead | 110, 124 |
| abstract_inverted_index.much | 86 |
| abstract_inverted_index.task | 283 |
| abstract_inverted_index.than | 89 |
| abstract_inverted_index.that | 131, 268, 315 |
| abstract_inverted_index.this | 38, 316 |
| abstract_inverted_index.used | 91 |
| abstract_inverted_index.with | 28, 60, 77, 200, 206, 244, 253, 291, 306, 323 |
| abstract_inverted_index.~2.5 | 201 |
| abstract_inverted_index.While | 37 |
| abstract_inverted_index.aimed | 97 |
| abstract_inverted_index.brain | 19, 29, 62, 78, 105, 113, 122, 207, 219, 279, 293, 308 |
| abstract_inverted_index.data, | 79, 247 |
| abstract_inverted_index.data. | 294, 326 |
| abstract_inverted_index.field | 7 |
| abstract_inverted_index.gains | 236, 345 |
| abstract_inverted_index.group | 265, 275 |
| abstract_inverted_index.large | 185 |
| abstract_inverted_index.major | 67 |
| abstract_inverted_index.model | 18 |
| abstract_inverted_index.often | 271 |
| abstract_inverted_index.other | 348 |
| abstract_inverted_index.scale | 88 |
| abstract_inverted_index.size. | 259 |
| abstract_inverted_index.small | 195 |
| abstract_inverted_index.tasks | 243, 322 |
| abstract_inverted_index.these | 144 |
| abstract_inverted_index.three | 210 |
| abstract_inverted_index.tools | 16 |
| abstract_inverted_index.train | 93 |
| abstract_inverted_index.where | 162, 248 |
| abstract_inverted_index.which | 80 |
| abstract_inverted_index.Future | 327 |
| abstract_inverted_index.answer | 99, 143 |
| abstract_inverted_index.better | 339 |
| abstract_inverted_index.beyond | 226 |
| abstract_inverted_index.during | 310 |
| abstract_inverted_index.extend | 346 |
| abstract_inverted_index.fourth | 223 |
| abstract_inverted_index.gained | 41 |
| abstract_inverted_index.larger | 334 |
| abstract_inverted_index.models | 57, 71, 109, 250, 256, 270, 276, 335 |
| abstract_inverted_index.needed | 330 |
| abstract_inverted_index.neural | 2, 56, 198, 303 |
| abstract_inverted_index.novel, | 116 |
| abstract_inverted_index.raises | 66 |
| abstract_inverted_index.relied | 147 |
| abstract_inverted_index.series | 174 |
| abstract_inverted_index.tasks, | 349 |
| abstract_inverted_index.tasks. | 36, 190 |
| abstract_inverted_index.tasks? | 141 |
| abstract_inverted_index.unseen | 118 |
| abstract_inverted_index.useful | 133 |
| abstract_inverted_index.visual | 45, 229 |
| abstract_inverted_index.Friends | 172, 213 |
| abstract_inverted_index.achieve | 337 |
| abstract_inverted_index.aligned | 59 |
| abstract_inverted_index.battery | 186 |
| abstract_inverted_index.complex | 139 |
| abstract_inverted_index.concept | 39 |
| abstract_inverted_index.context | 353 |
| abstract_inverted_index.dataset | 155 |
| abstract_inverted_index.domain, | 46 |
| abstract_inverted_index.emerged | 13 |
| abstract_inverted_index.enhance | 32 |
| abstract_inverted_index.finally | 261 |
| abstract_inverted_index.finding | 267 |
| abstract_inverted_index.imaging | 179 |
| abstract_inverted_index.limited | 245, 324 |
| abstract_inverted_index.massive | 150 |
| abstract_inverted_index.matched | 272 |
| abstract_inverted_index.models, | 266 |
| abstract_inverted_index.models. | 95 |
| abstract_inverted_index.network | 26, 199, 304 |
| abstract_inverted_index.results | 296 |
| abstract_inverted_index.season, | 224 |
| abstract_inverted_index.seasons | 167, 211 |
| abstract_inverted_index.signals | 130 |
| abstract_inverted_index.smaller | 87 |
| abstract_inverted_index.solving | 135 |
| abstract_inverted_index.suggest | 314 |
| abstract_inverted_index.support | 42 |
| abstract_inverted_index.trained | 4, 75 |
| abstract_inverted_index.variety | 137 |
| abstract_inverted_index.watched | 165 |
| abstract_inverted_index.whether | 333, 342 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Aligning | 204 |
| abstract_inverted_index.Courtois | 158 |
| abstract_inverted_index.SoundNet | 205 |
| abstract_inverted_index.activity | 309 |
| abstract_inverted_index.aligning | 25, 301 |
| abstract_inverted_index.auditory | 54, 108, 129, 140, 189, 227, 311 |
| abstract_inverted_index.compared | 262 |
| abstract_inverted_index.creating | 53 |
| abstract_inverted_index.directly | 58, 76 |
| abstract_inverted_index.dynamics | 30 |
| abstract_inverted_index.encoding | 114, 220, 280 |
| abstract_inverted_index.few-shot | 355 |
| abstract_inverted_index.improved | 112 |
| abstract_inverted_index.magnetic | 177 |
| abstract_inverted_index.networks | 3 |
| abstract_inverted_index.neuronal | 159 |
| abstract_inverted_index.observed | 233, 344 |
| abstract_inverted_index.project, | 161 |
| abstract_inverted_index.research | 328 |
| abstract_inverted_index.sparking | 21 |
| abstract_inverted_index.stimuli? | 119 |
| abstract_inverted_index.subjects | 164 |
| abstract_inverted_index.training | 246, 325 |
| abstract_inverted_index.SoundNet, | 193 |
| abstract_inverted_index.activity. | 63 |
| abstract_inverted_index.alignment | 106, 123, 317 |
| abstract_inverted_index.collected | 83 |
| abstract_inverted_index.cortices. | 230 |
| abstract_inverted_index.datasets: | 151 |
| abstract_inverted_index.establish | 332 |
| abstract_inverted_index.extending | 225 |
| abstract_inverted_index.learning. | 356 |
| abstract_inverted_index.modelling | 160 |
| abstract_inverted_index.objective | 65 |
| abstract_inverted_index.performed | 251 |
| abstract_inverted_index.resonance | 178 |
| abstract_inverted_index.typically | 82 |
| abstract_inverted_index.Artificial | 1 |
| abstract_inverted_index.artificial | 9, 55, 302 |
| abstract_inverted_index.benchmark, | 183, 240 |
| abstract_inverted_index.beneficial | 320 |
| abstract_inverted_index.comparably | 252 |
| abstract_inverted_index.consistent | 234 |
| abstract_inverted_index.downstream | 188, 282 |
| abstract_inverted_index.efficiency | 288 |
| abstract_inverted_index.fine-tuned | 192 |
| abstract_inverted_index.functional | 176 |
| abstract_inverted_index.individual | 61, 263, 269, 292, 307 |
| abstract_inverted_index.pretrained | 196 |
| abstract_inverted_index.previously | 117 |
| abstract_inverted_index.processes, | 20 |
| abstract_inverted_index.questions, | 145 |
| abstract_inverted_index.questions: | 102 |
| abstract_inverted_index.regardless | 257 |
| abstract_inverted_index.challenges, | 69 |
| abstract_inverted_index.demonstrate | 297 |
| abstract_inverted_index.feasibility | 51, 299 |
| abstract_inverted_index.fine-tuning | 290 |
| abstract_inverted_index.improvement | 217 |
| abstract_inverted_index.investigate | 48 |
| abstract_inverted_index.parameters. | 203 |
| abstract_inverted_index.performance | 33, 235, 340 |
| abstract_inverted_index.phenotyping | 154 |
| abstract_inverted_index.processing, | 312 |
| abstract_inverted_index.substantial | 216 |
| abstract_inverted_index.highlighting | 285 |
| abstract_inverted_index.intelligence | 10 |
| abstract_inverted_index.outperformed | 274 |
| abstract_inverted_index.particularly | 241, 319, 350 |
| abstract_inverted_index.performance, | 284 |
| abstract_inverted_index.brain-aligned | 249 |
| abstract_inverted_index.computational | 68 |
| abstract_inverted_index.convolutional | 197 |
| abstract_inverted_index.generalisable | 126 |
| abstract_inverted_index.best-performing | 255 |
| abstract_inverted_index.representations | 27, 127, 305 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.83401342 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |