All of Us diversity and scale improve polygenic prediction contextually with greatest improvements for under-represented populations Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1101/2024.08.06.606846
Recent studies have demonstrated that polygenic risk scores (PRS) trained on multi-ancestry data can improve prediction accuracy in groups historically underrepresented in genomic studies, but the availability of linked health and genetic data from large-scale diverse cohorts representative of a wide spectrum of human diversity remains limited. To address this need, the All of Us research program (AoU) generated whole-genome sequences of 245,388 individuals (release v7) who collectively reflect the diversity of the USA. Leveraging this resource and another widely-used population-scale biobank, the UK Biobank (UKB) with a half million participants, we developed PRS trained on multi-ancestry and multi-biobank data with up to ∼750,000 participants for 32 common, complex traits and diseases across a range of genetic architectures. We then evaluated effects of ancestry, PRS methodology, and genetic architecture on PRS accuracy across a held out subset of ancestrally diverse AoU participants. Overall, we found that the increased diversity of AoU significantly improved PRS performance in some participants in AoU, especially underrepresented individuals, across multiple phenotypes. Notably, maximizing sample size by combining discovery data across AoU and UKB is not the optimal approach for predicting some phenotypes particularly in African ancestry populations; rather, using data from only AoU for these traits resulted in the greatest accuracy. This was especially true for less polygenic traits with large ancestry-enriched effects, and larger heritability estimates in African ancestry populations, such as neutrophil count ( R 2 : 0.055 vs. 0.035 using AoU vs. cross-biobank meta-analysis, respectively, because of e.g. DARC ). Lastly, we calculated individual-level PRS accuracies rather than grouping by continental ancestry, a critical step towards interpretability in precision medicine. Individualized PRS accuracy decays linearly as a function of ancestry divergence, but the slope was smaller using multi-ancestry GWAS compared to using European GWAS. Our results highlight the potential of biobanks with more balanced representations of human diversity to facilitate more accurate PRS for the individuals least represented in genomic studies.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2024.08.06.606846
- https://www.biorxiv.org/content/biorxiv/early/2024/08/06/2024.08.06.606846.full.pdf
- OA Status
- green
- Cited By
- 11
- References
- 62
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401385217
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401385217Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2024.08.06.606846Digital Object Identifier
- Title
-
All of Us diversity and scale improve polygenic prediction contextually with greatest improvements for under-represented populationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-06Full publication date if available
- Authors
-
Kristin Tsuo, Zhuozheng Shi, Tian Ge, Ravi Mandla, Kangcheng Hou, Yi Ding, Bogdan Paşaniuc, Ying Wang, Alicia R. MartinList of authors in order
- Landing page
-
https://doi.org/10.1101/2024.08.06.606846Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2024/08/06/2024.08.06.606846.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2024/08/06/2024.08.06.606846.full.pdfDirect OA link when available
- Concepts
-
Diversity (politics), Scale (ratio), Psychology, Data science, Computer science, Geography, Sociology, Cartography, AnthropologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 9, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
62Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401385217 |
|---|---|
| doi | https://doi.org/10.1101/2024.08.06.606846 |
| ids.doi | https://doi.org/10.1101/2024.08.06.606846 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39149254 |
| ids.openalex | https://openalex.org/W4401385217 |
| fwci | 12.03620179 |
| type | preprint |
| title | All of Us diversity and scale improve polygenic prediction contextually with greatest improvements for under-represented populations |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10261 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1311 |
| topics[0].subfield.display_name | Genetics |
| topics[0].display_name | Genetic Associations and Epidemiology |
| topics[1].id | https://openalex.org/T10594 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9987000226974487 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1311 |
| topics[1].subfield.display_name | Genetics |
| topics[1].display_name | Genetic and phenotypic traits in livestock |
| topics[2].id | https://openalex.org/T11468 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9943000078201294 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1311 |
| topics[2].subfield.display_name | Genetics |
| topics[2].display_name | Genetic Mapping and Diversity in Plants and Animals |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781316041 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7333239316940308 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1230584 |
| concepts[0].display_name | Diversity (politics) |
| concepts[1].id | https://openalex.org/C2778755073 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6310278177261353 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[1].display_name | Scale (ratio) |
| concepts[2].id | https://openalex.org/C15744967 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4063272476196289 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[2].display_name | Psychology |
| concepts[3].id | https://openalex.org/C2522767166 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3300040066242218 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[3].display_name | Data science |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3280872106552124 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C205649164 |
| concepts[5].level | 0 |
| concepts[5].score | 0.2672139108181 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[5].display_name | Geography |
| concepts[6].id | https://openalex.org/C144024400 |
| concepts[6].level | 0 |
| concepts[6].score | 0.24023231863975525 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[6].display_name | Sociology |
| concepts[7].id | https://openalex.org/C58640448 |
| concepts[7].level | 1 |
| concepts[7].score | 0.12231644988059998 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[7].display_name | Cartography |
| concepts[8].id | https://openalex.org/C19165224 |
| concepts[8].level | 1 |
| concepts[8].score | 0.06829240918159485 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q23404 |
| concepts[8].display_name | Anthropology |
| keywords[0].id | https://openalex.org/keywords/diversity |
| keywords[0].score | 0.7333239316940308 |
| keywords[0].display_name | Diversity (politics) |
| keywords[1].id | https://openalex.org/keywords/scale |
| keywords[1].score | 0.6310278177261353 |
| keywords[1].display_name | Scale (ratio) |
| keywords[2].id | https://openalex.org/keywords/psychology |
| keywords[2].score | 0.4063272476196289 |
| keywords[2].display_name | Psychology |
| keywords[3].id | https://openalex.org/keywords/data-science |
| keywords[3].score | 0.3300040066242218 |
| keywords[3].display_name | Data science |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.3280872106552124 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/geography |
| keywords[5].score | 0.2672139108181 |
| keywords[5].display_name | Geography |
| keywords[6].id | https://openalex.org/keywords/sociology |
| keywords[6].score | 0.24023231863975525 |
| keywords[6].display_name | Sociology |
| keywords[7].id | https://openalex.org/keywords/cartography |
| keywords[7].score | 0.12231644988059998 |
| keywords[7].display_name | Cartography |
| keywords[8].id | https://openalex.org/keywords/anthropology |
| keywords[8].score | 0.06829240918159485 |
| keywords[8].display_name | Anthropology |
| language | en |
| locations[0].id | doi:10.1101/2024.08.06.606846 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2024/08/06/2024.08.06.606846.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2024.08.06.606846 |
| locations[1].id | pmid:39149254 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | bioRxiv : the preprint server for biology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39149254 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11326295 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | bioRxiv |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11326295 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5083176551 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3558-8479 |
| authorships[0].author.display_name | Kristin Tsuo |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I107606265 |
| authorships[0].affiliations[0].raw_affiliation_string | Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA. |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I107606265 |
| authorships[0].affiliations[1].raw_affiliation_string | Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I4210087915 |
| authorships[0].affiliations[2].raw_affiliation_string | Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA |
| authorships[0].institutions[0].id | https://openalex.org/I107606265 |
| authorships[0].institutions[0].ror | https://ror.org/05a0ya142 |
| authorships[0].institutions[0].type | nonprofit |
| authorships[0].institutions[0].lineage | https://openalex.org/I107606265 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Broad Institute |
| authorships[0].institutions[1].id | https://openalex.org/I4210087915 |
| authorships[0].institutions[1].ror | https://ror.org/002pd6e78 |
| authorships[0].institutions[1].type | healthcare |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210087915, https://openalex.org/I48633490 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Massachusetts General Hospital |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kristin Tsuo |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA |
| authorships[1].author.id | https://openalex.org/A5113993456 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Zhuozheng Shi |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[1].affiliations[0].raw_affiliation_string | Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA |
| authorships[1].institutions[0].id | https://openalex.org/I161318765 |
| authorships[1].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of California, Los Angeles |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhuozheng Shi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA |
| authorships[2].author.id | https://openalex.org/A5032711494 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4785-4444 |
| authorships[2].author.display_name | Tian Ge |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I107606265 |
| authorships[2].affiliations[0].raw_affiliation_string | Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210087915 |
| authorships[2].affiliations[1].raw_affiliation_string | Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I4210087915 |
| authorships[2].affiliations[2].raw_affiliation_string | Center for Precision Psychiatry, Massachusetts General Hospital, Boston, MA, USA |
| authorships[2].affiliations[3].institution_ids | https://openalex.org/I136199984, https://openalex.org/I4210087915 |
| authorships[2].affiliations[3].raw_affiliation_string | Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA |
| authorships[2].institutions[0].id | https://openalex.org/I107606265 |
| authorships[2].institutions[0].ror | https://ror.org/05a0ya142 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I107606265 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Broad Institute |
| authorships[2].institutions[1].id | https://openalex.org/I136199984 |
| authorships[2].institutions[1].ror | https://ror.org/03vek6s52 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I136199984 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | Harvard University |
| authorships[2].institutions[2].id | https://openalex.org/I4210087915 |
| authorships[2].institutions[2].ror | https://ror.org/002pd6e78 |
| authorships[2].institutions[2].type | healthcare |
| authorships[2].institutions[2].lineage | https://openalex.org/I4210087915, https://openalex.org/I48633490 |
| authorships[2].institutions[2].country_code | US |
| authorships[2].institutions[2].display_name | Massachusetts General Hospital |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tian Ge |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Center for Precision Psychiatry, Massachusetts General Hospital, Boston, MA, USA, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA, Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA, Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA |
| authorships[3].author.id | https://openalex.org/A5091025813 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0782-0138 |
| authorships[3].author.display_name | Ravi Mandla |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[3].affiliations[0].raw_affiliation_string | Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA |
| authorships[3].institutions[0].id | https://openalex.org/I161318765 |
| authorships[3].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of California, Los Angeles |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ravi Mandla |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA |
| authorships[4].author.id | https://openalex.org/A5040739184 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7110-5596 |
| authorships[4].author.display_name | Kangcheng Hou |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[4].affiliations[0].raw_affiliation_string | Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA |
| authorships[4].institutions[0].id | https://openalex.org/I161318765 |
| authorships[4].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of California, Los Angeles |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Kangcheng Hou |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA |
| authorships[5].author.id | https://openalex.org/A5002446630 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3595-2493 |
| authorships[5].author.display_name | Yi Ding |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[5].affiliations[0].raw_affiliation_string | Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA |
| authorships[5].institutions[0].id | https://openalex.org/I161318765 |
| authorships[5].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of California, Los Angeles |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yi Ding |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA |
| authorships[6].author.id | https://openalex.org/A5057630970 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-0227-2056 |
| authorships[6].author.display_name | Bogdan Paşaniuc |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I161318765 |
| authorships[6].affiliations[1].raw_affiliation_string | Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 005, USA |
| authorships[6].affiliations[2].institution_ids | https://openalex.org/I161318765 |
| authorships[6].affiliations[2].raw_affiliation_string | Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA |
| authorships[6].affiliations[3].institution_ids | https://openalex.org/I161318765 |
| authorships[6].affiliations[3].raw_affiliation_string | Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, USA. |
| authorships[6].affiliations[4].institution_ids | https://openalex.org/I161318765 |
| authorships[6].affiliations[4].raw_affiliation_string | Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA |
| authorships[6].institutions[0].id | https://openalex.org/I161318765 |
| authorships[6].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | University of California, Los Angeles |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Bogdan Pasaniuc |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA, Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 005, USA, Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, USA., Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA |
| authorships[7].author.id | https://openalex.org/A5075598991 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-7808-6279 |
| authorships[7].author.display_name | Ying Wang |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210087915 |
| authorships[7].affiliations[0].raw_affiliation_string | Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I107606265 |
| authorships[7].affiliations[1].raw_affiliation_string | Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA. |
| authorships[7].affiliations[2].institution_ids | https://openalex.org/I107606265 |
| authorships[7].affiliations[2].raw_affiliation_string | Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA |
| authorships[7].institutions[0].id | https://openalex.org/I107606265 |
| authorships[7].institutions[0].ror | https://ror.org/05a0ya142 |
| authorships[7].institutions[0].type | nonprofit |
| authorships[7].institutions[0].lineage | https://openalex.org/I107606265 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Broad Institute |
| authorships[7].institutions[1].id | https://openalex.org/I4210087915 |
| authorships[7].institutions[1].ror | https://ror.org/002pd6e78 |
| authorships[7].institutions[1].type | healthcare |
| authorships[7].institutions[1].lineage | https://openalex.org/I4210087915, https://openalex.org/I48633490 |
| authorships[7].institutions[1].country_code | US |
| authorships[7].institutions[1].display_name | Massachusetts General Hospital |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Ying Wang |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA |
| authorships[8].author.id | https://openalex.org/A5055040294 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-0241-3522 |
| authorships[8].author.display_name | Alicia R. Martin |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I107606265 |
| authorships[8].affiliations[0].raw_affiliation_string | Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA. |
| authorships[8].affiliations[1].institution_ids | https://openalex.org/I4210087915 |
| authorships[8].affiliations[1].raw_affiliation_string | Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA |
| authorships[8].affiliations[2].institution_ids | https://openalex.org/I107606265 |
| authorships[8].affiliations[2].raw_affiliation_string | Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA |
| authorships[8].institutions[0].id | https://openalex.org/I107606265 |
| authorships[8].institutions[0].ror | https://ror.org/05a0ya142 |
| authorships[8].institutions[0].type | nonprofit |
| authorships[8].institutions[0].lineage | https://openalex.org/I107606265 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Broad Institute |
| authorships[8].institutions[1].id | https://openalex.org/I4210087915 |
| authorships[8].institutions[1].ror | https://ror.org/002pd6e78 |
| authorships[8].institutions[1].type | healthcare |
| authorships[8].institutions[1].lineage | https://openalex.org/I4210087915, https://openalex.org/I48633490 |
| authorships[8].institutions[1].country_code | US |
| authorships[8].institutions[1].display_name | Massachusetts General Hospital |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Alicia R. Martin |
| authorships[8].is_corresponding | True |
| authorships[8].raw_affiliation_strings | Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2024/08/06/2024.08.06.606846.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | All of Us diversity and scale improve polygenic prediction contextually with greatest improvements for under-represented populations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10261 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1311 |
| primary_topic.subfield.display_name | Genetics |
| primary_topic.display_name | Genetic Associations and Epidemiology |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 9 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1101/2024.08.06.606846 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2024/08/06/2024.08.06.606846.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2024.08.06.606846 |
| primary_location.id | doi:10.1101/2024.08.06.606846 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2024/08/06/2024.08.06.606846.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2024.08.06.606846 |
| publication_date | 2024-08-06 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2725988230, https://openalex.org/W2923757114, https://openalex.org/W3134721632, https://openalex.org/W4280537111, https://openalex.org/W4388221222, https://openalex.org/W4391925496, https://openalex.org/W2932671560, https://openalex.org/W4229035861, https://openalex.org/W2950135831, https://openalex.org/W2741020202, https://openalex.org/W4386136485, https://openalex.org/W4386776105, https://openalex.org/W3159881528, https://openalex.org/W4283067507, https://openalex.org/W3046366876, https://openalex.org/W2123523713, https://openalex.org/W2949539428, https://openalex.org/W4392862921, https://openalex.org/W4304695497, https://openalex.org/W4391925503, https://openalex.org/W4304698823, https://openalex.org/W4382515792, https://openalex.org/W4391925485, https://openalex.org/W4313492671, https://openalex.org/W4383371561, https://openalex.org/W4283712790, https://openalex.org/W3205644245, https://openalex.org/W4281666919, https://openalex.org/W4387012794, https://openalex.org/W4389742352, https://openalex.org/W4394808249, https://openalex.org/W4383534178, https://openalex.org/W4390400367, https://openalex.org/W3004083863, https://openalex.org/W4385297073, https://openalex.org/W2723723801, https://openalex.org/W4399886647, https://openalex.org/W4376959645, https://openalex.org/W2153860431, https://openalex.org/W2033151532, https://openalex.org/W2155496693, https://openalex.org/W2438256301, https://openalex.org/W2086799994, https://openalex.org/W6678119343, https://openalex.org/W4200559672, https://openalex.org/W4320480795, https://openalex.org/W4223924706, https://openalex.org/W3176096496, https://openalex.org/W2895486342, https://openalex.org/W4205170775, https://openalex.org/W2102714321, https://openalex.org/W2104549677, https://openalex.org/W2099085143, https://openalex.org/W3162800482, https://openalex.org/W2133520037, https://openalex.org/W3131856571, https://openalex.org/W2951553270, https://openalex.org/W4400770247, https://openalex.org/W2973113902, https://openalex.org/W2886752110, https://openalex.org/W4221066745, https://openalex.org/W4399746524 |
| referenced_works_count | 62 |
| abstract_inverted_index.( | 231 |
| abstract_inverted_index.2 | 233 |
| abstract_inverted_index.: | 234 |
| abstract_inverted_index.R | 232 |
| abstract_inverted_index.a | 40, 88, 114, 134, 261, 275 |
| abstract_inverted_index.). | 248 |
| abstract_inverted_index.32 | 107 |
| abstract_inverted_index.To | 48 |
| abstract_inverted_index.UK | 84 |
| abstract_inverted_index.Us | 55 |
| abstract_inverted_index.We | 119 |
| abstract_inverted_index.as | 228, 274 |
| abstract_inverted_index.by | 171, 258 |
| abstract_inverted_index.in | 18, 22, 156, 159, 189, 203, 223, 266, 317 |
| abstract_inverted_index.is | 179 |
| abstract_inverted_index.of | 28, 39, 43, 54, 62, 72, 116, 123, 138, 150, 245, 277, 298, 304 |
| abstract_inverted_index.on | 11, 96, 130 |
| abstract_inverted_index.to | 103, 289, 307 |
| abstract_inverted_index.up | 102 |
| abstract_inverted_index.we | 92, 144, 250 |
| abstract_inverted_index.All | 53 |
| abstract_inverted_index.AoU | 141, 151, 176, 198, 239 |
| abstract_inverted_index.Our | 293 |
| abstract_inverted_index.PRS | 94, 125, 131, 154, 253, 270, 311 |
| abstract_inverted_index.UKB | 178 |
| abstract_inverted_index.and | 31, 78, 98, 111, 127, 177, 219 |
| abstract_inverted_index.but | 25, 280 |
| abstract_inverted_index.can | 14 |
| abstract_inverted_index.for | 106, 184, 199, 211, 312 |
| abstract_inverted_index.not | 180 |
| abstract_inverted_index.out | 136 |
| abstract_inverted_index.the | 26, 52, 70, 73, 83, 147, 181, 204, 281, 296, 313 |
| abstract_inverted_index.v7) | 66 |
| abstract_inverted_index.vs. | 236, 240 |
| abstract_inverted_index.was | 208, 283 |
| abstract_inverted_index.who | 67 |
| abstract_inverted_index.AoU, | 160 |
| abstract_inverted_index.DARC | 247 |
| abstract_inverted_index.GWAS | 287 |
| abstract_inverted_index.This | 207 |
| abstract_inverted_index.USA. | 74 |
| abstract_inverted_index.data | 13, 33, 100, 174, 195 |
| abstract_inverted_index.e.g. | 246 |
| abstract_inverted_index.from | 34, 196 |
| abstract_inverted_index.half | 89 |
| abstract_inverted_index.have | 3 |
| abstract_inverted_index.held | 135 |
| abstract_inverted_index.less | 212 |
| abstract_inverted_index.more | 301, 309 |
| abstract_inverted_index.only | 197 |
| abstract_inverted_index.risk | 7 |
| abstract_inverted_index.size | 170 |
| abstract_inverted_index.some | 157, 186 |
| abstract_inverted_index.step | 263 |
| abstract_inverted_index.such | 227 |
| abstract_inverted_index.than | 256 |
| abstract_inverted_index.that | 5, 146 |
| abstract_inverted_index.then | 120 |
| abstract_inverted_index.this | 50, 76 |
| abstract_inverted_index.true | 210 |
| abstract_inverted_index.wide | 41 |
| abstract_inverted_index.with | 87, 101, 215, 300 |
| abstract_inverted_index.(AoU) | 58 |
| abstract_inverted_index.(PRS) | 9 |
| abstract_inverted_index.(UKB) | 86 |
| abstract_inverted_index.0.035 | 237 |
| abstract_inverted_index.0.055 | 235 |
| abstract_inverted_index.GWAS. | 292 |
| abstract_inverted_index.count | 230 |
| abstract_inverted_index.found | 145 |
| abstract_inverted_index.human | 44, 305 |
| abstract_inverted_index.large | 216 |
| abstract_inverted_index.least | 315 |
| abstract_inverted_index.need, | 51 |
| abstract_inverted_index.range | 115 |
| abstract_inverted_index.slope | 282 |
| abstract_inverted_index.these | 200 |
| abstract_inverted_index.using | 194, 238, 285, 290 |
| abstract_inverted_index.Recent | 1 |
| abstract_inverted_index.across | 113, 133, 164, 175 |
| abstract_inverted_index.decays | 272 |
| abstract_inverted_index.groups | 19 |
| abstract_inverted_index.health | 30 |
| abstract_inverted_index.larger | 220 |
| abstract_inverted_index.linked | 29 |
| abstract_inverted_index.rather | 255 |
| abstract_inverted_index.sample | 169 |
| abstract_inverted_index.scores | 8 |
| abstract_inverted_index.subset | 137 |
| abstract_inverted_index.traits | 110, 201, 214 |
| abstract_inverted_index.245,388 | 63 |
| abstract_inverted_index.African | 190, 224 |
| abstract_inverted_index.Biobank | 85 |
| abstract_inverted_index.Lastly, | 249 |
| abstract_inverted_index.address | 49 |
| abstract_inverted_index.another | 79 |
| abstract_inverted_index.because | 244 |
| abstract_inverted_index.cohorts | 37 |
| abstract_inverted_index.common, | 108 |
| abstract_inverted_index.complex | 109 |
| abstract_inverted_index.diverse | 36, 140 |
| abstract_inverted_index.effects | 122 |
| abstract_inverted_index.genetic | 32, 117, 128 |
| abstract_inverted_index.genomic | 23, 318 |
| abstract_inverted_index.improve | 15 |
| abstract_inverted_index.million | 90 |
| abstract_inverted_index.optimal | 182 |
| abstract_inverted_index.program | 57 |
| abstract_inverted_index.rather, | 193 |
| abstract_inverted_index.reflect | 69 |
| abstract_inverted_index.remains | 46 |
| abstract_inverted_index.results | 294 |
| abstract_inverted_index.smaller | 284 |
| abstract_inverted_index.studies | 2 |
| abstract_inverted_index.towards | 264 |
| abstract_inverted_index.trained | 10, 95 |
| abstract_inverted_index.(release | 65 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.European | 291 |
| abstract_inverted_index.Notably, | 167 |
| abstract_inverted_index.Overall, | 143 |
| abstract_inverted_index.accuracy | 17, 132, 271 |
| abstract_inverted_index.accurate | 310 |
| abstract_inverted_index.ancestry | 191, 225, 278 |
| abstract_inverted_index.approach | 183 |
| abstract_inverted_index.balanced | 302 |
| abstract_inverted_index.biobank, | 82 |
| abstract_inverted_index.biobanks | 299 |
| abstract_inverted_index.compared | 288 |
| abstract_inverted_index.critical | 262 |
| abstract_inverted_index.diseases | 112 |
| abstract_inverted_index.effects, | 218 |
| abstract_inverted_index.function | 276 |
| abstract_inverted_index.greatest | 205 |
| abstract_inverted_index.grouping | 257 |
| abstract_inverted_index.improved | 153 |
| abstract_inverted_index.limited. | 47 |
| abstract_inverted_index.linearly | 273 |
| abstract_inverted_index.multiple | 165 |
| abstract_inverted_index.research | 56 |
| abstract_inverted_index.resource | 77 |
| abstract_inverted_index.resulted | 202 |
| abstract_inverted_index.spectrum | 42 |
| abstract_inverted_index.studies, | 24 |
| abstract_inverted_index.studies. | 319 |
| abstract_inverted_index.accuracy. | 206 |
| abstract_inverted_index.ancestry, | 124, 260 |
| abstract_inverted_index.combining | 172 |
| abstract_inverted_index.developed | 93 |
| abstract_inverted_index.discovery | 173 |
| abstract_inverted_index.diversity | 45, 71, 149, 306 |
| abstract_inverted_index.estimates | 222 |
| abstract_inverted_index.evaluated | 121 |
| abstract_inverted_index.generated | 59 |
| abstract_inverted_index.highlight | 295 |
| abstract_inverted_index.increased | 148 |
| abstract_inverted_index.medicine. | 268 |
| abstract_inverted_index.polygenic | 6, 213 |
| abstract_inverted_index.potential | 297 |
| abstract_inverted_index.precision | 267 |
| abstract_inverted_index.sequences | 61 |
| abstract_inverted_index.Leveraging | 75 |
| abstract_inverted_index.accuracies | 254 |
| abstract_inverted_index.calculated | 251 |
| abstract_inverted_index.especially | 161, 209 |
| abstract_inverted_index.facilitate | 308 |
| abstract_inverted_index.maximizing | 168 |
| abstract_inverted_index.neutrophil | 229 |
| abstract_inverted_index.phenotypes | 187 |
| abstract_inverted_index.predicting | 185 |
| abstract_inverted_index.prediction | 16 |
| abstract_inverted_index.∼750,000 | 104 |
| abstract_inverted_index.ancestrally | 139 |
| abstract_inverted_index.continental | 259 |
| abstract_inverted_index.divergence, | 279 |
| abstract_inverted_index.individuals | 64, 314 |
| abstract_inverted_index.large-scale | 35 |
| abstract_inverted_index.performance | 155 |
| abstract_inverted_index.phenotypes. | 166 |
| abstract_inverted_index.represented | 316 |
| abstract_inverted_index.widely-used | 80 |
| abstract_inverted_index.architecture | 129 |
| abstract_inverted_index.availability | 27 |
| abstract_inverted_index.collectively | 68 |
| abstract_inverted_index.demonstrated | 4 |
| abstract_inverted_index.heritability | 221 |
| abstract_inverted_index.historically | 20 |
| abstract_inverted_index.individuals, | 163 |
| abstract_inverted_index.methodology, | 126 |
| abstract_inverted_index.participants | 105, 158 |
| abstract_inverted_index.particularly | 188 |
| abstract_inverted_index.populations, | 226 |
| abstract_inverted_index.populations; | 192 |
| abstract_inverted_index.whole-genome | 60 |
| abstract_inverted_index.cross-biobank | 241 |
| abstract_inverted_index.multi-biobank | 99 |
| abstract_inverted_index.participants, | 91 |
| abstract_inverted_index.participants. | 142 |
| abstract_inverted_index.respectively, | 243 |
| abstract_inverted_index.significantly | 152 |
| abstract_inverted_index.Individualized | 269 |
| abstract_inverted_index.architectures. | 118 |
| abstract_inverted_index.meta-analysis, | 242 |
| abstract_inverted_index.multi-ancestry | 12, 97, 286 |
| abstract_inverted_index.representative | 38 |
| abstract_inverted_index.representations | 303 |
| abstract_inverted_index.individual-level | 252 |
| abstract_inverted_index.interpretability | 265 |
| abstract_inverted_index.population-scale | 81 |
| abstract_inverted_index.underrepresented | 21, 162 |
| abstract_inverted_index.ancestry-enriched | 217 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5075598991, https://openalex.org/A5055040294, https://openalex.org/A5083176551 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I107606265, https://openalex.org/I4210087915 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.46000000834465027 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| citation_normalized_percentile.value | 0.97699765 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |