Alleviating All-to-All Communication for Deep Learning Recommendation Model Inference Article Swipe
Songjun Huang
,
Yihong Li
,
L P Chen
,
Xiaoxi Zhang
,
Shuo Liu
,
Jingpu Duan
,
Wenfei Wu
,
Xu Chen
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1145/3677333.3678267
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1145/3677333.3678267
Massive DLRMs require large-scale multi-node systems for distributed training and inference, thus suffering from the all-to-all communication bottleneck. We propose an architecture, EmbedSwitch, that offloads the cache function of the embedding table vectors to a programmable switch, to overcome this bottleneck and provide switch-level response latency for embedding table vector requests.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3677333.3678267
- https://dl.acm.org/doi/pdf/10.1145/3677333.3678267
- OA Status
- gold
- References
- 4
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401455086
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401455086Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3677333.3678267Digital Object Identifier
- Title
-
Alleviating All-to-All Communication for Deep Learning Recommendation Model InferenceWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-09Full publication date if available
- Authors
-
Songjun Huang, Yihong Li, L P Chen, Xiaoxi Zhang, Shuo Liu, Jingpu Duan, Wenfei Wu, Xu ChenList of authors in order
- Landing page
-
https://doi.org/10.1145/3677333.3678267Publisher landing page
- PDF URL
-
https://dl.acm.org/doi/pdf/10.1145/3677333.3678267Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://dl.acm.org/doi/pdf/10.1145/3677333.3678267Direct OA link when available
- Concepts
-
Bottleneck, Computer science, Inference, Latency (audio), Embedding, Cache, Table (database), Distributed computing, Computer network, Computer architecture, Artificial intelligence, Embedded system, Data mining, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
4Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401455086 |
|---|---|
| doi | https://doi.org/10.1145/3677333.3678267 |
| ids.doi | https://doi.org/10.1145/3677333.3678267 |
| ids.openalex | https://openalex.org/W4401455086 |
| fwci | 0.0 |
| type | article |
| title | Alleviating All-to-All Communication for Deep Learning Recommendation Model Inference |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 105 |
| biblio.first_page | 104 |
| topics[0].id | https://openalex.org/T10203 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9984999895095825 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Recommender Systems and Techniques |
| topics[1].id | https://openalex.org/T13702 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9972000122070312 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning in Healthcare |
| topics[2].id | https://openalex.org/T11273 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9970999956130981 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Graph Neural Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780513914 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8819723725318909 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q18210350 |
| concepts[0].display_name | Bottleneck |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8369426727294922 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2776214188 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7050793170928955 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[2].display_name | Inference |
| concepts[3].id | https://openalex.org/C82876162 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6956108808517456 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17096504 |
| concepts[3].display_name | Latency (audio) |
| concepts[4].id | https://openalex.org/C41608201 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6313348412513733 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[4].display_name | Embedding |
| concepts[5].id | https://openalex.org/C115537543 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6309880614280701 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q165596 |
| concepts[5].display_name | Cache |
| concepts[6].id | https://openalex.org/C45235069 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5512118339538574 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q278425 |
| concepts[6].display_name | Table (database) |
| concepts[7].id | https://openalex.org/C120314980 |
| concepts[7].level | 1 |
| concepts[7].score | 0.42476871609687805 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[7].display_name | Distributed computing |
| concepts[8].id | https://openalex.org/C31258907 |
| concepts[8].level | 1 |
| concepts[8].score | 0.35340791940689087 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[8].display_name | Computer network |
| concepts[9].id | https://openalex.org/C118524514 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3476039469242096 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q173212 |
| concepts[9].display_name | Computer architecture |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.33417850732803345 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C149635348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.19115084409713745 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[11].display_name | Embedded system |
| concepts[12].id | https://openalex.org/C124101348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.179984450340271 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[12].display_name | Data mining |
| concepts[13].id | https://openalex.org/C76155785 |
| concepts[13].level | 1 |
| concepts[13].score | 0.1220005452632904 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[13].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/bottleneck |
| keywords[0].score | 0.8819723725318909 |
| keywords[0].display_name | Bottleneck |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8369426727294922 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/inference |
| keywords[2].score | 0.7050793170928955 |
| keywords[2].display_name | Inference |
| keywords[3].id | https://openalex.org/keywords/latency |
| keywords[3].score | 0.6956108808517456 |
| keywords[3].display_name | Latency (audio) |
| keywords[4].id | https://openalex.org/keywords/embedding |
| keywords[4].score | 0.6313348412513733 |
| keywords[4].display_name | Embedding |
| keywords[5].id | https://openalex.org/keywords/cache |
| keywords[5].score | 0.6309880614280701 |
| keywords[5].display_name | Cache |
| keywords[6].id | https://openalex.org/keywords/table |
| keywords[6].score | 0.5512118339538574 |
| keywords[6].display_name | Table (database) |
| keywords[7].id | https://openalex.org/keywords/distributed-computing |
| keywords[7].score | 0.42476871609687805 |
| keywords[7].display_name | Distributed computing |
| keywords[8].id | https://openalex.org/keywords/computer-network |
| keywords[8].score | 0.35340791940689087 |
| keywords[8].display_name | Computer network |
| keywords[9].id | https://openalex.org/keywords/computer-architecture |
| keywords[9].score | 0.3476039469242096 |
| keywords[9].display_name | Computer architecture |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.33417850732803345 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/embedded-system |
| keywords[11].score | 0.19115084409713745 |
| keywords[11].display_name | Embedded system |
| keywords[12].id | https://openalex.org/keywords/data-mining |
| keywords[12].score | 0.179984450340271 |
| keywords[12].display_name | Data mining |
| keywords[13].id | https://openalex.org/keywords/telecommunications |
| keywords[13].score | 0.1220005452632904 |
| keywords[13].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.1145/3677333.3678267 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://dl.acm.org/doi/pdf/10.1145/3677333.3678267 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The 53rd International Conference on Parallel Processing Workshops |
| locations[0].landing_page_url | https://doi.org/10.1145/3677333.3678267 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5072507819 |
| authorships[0].author.orcid | https://orcid.org/0009-0005-9900-0530 |
| authorships[0].author.display_name | Songjun Huang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[0].affiliations[0].raw_affiliation_string | Sun Yat-sen University, China |
| authorships[0].institutions[0].id | https://openalex.org/I157773358 |
| authorships[0].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Sun Yat-sen University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Songjun Huang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Sun Yat-sen University, China |
| authorships[1].author.id | https://openalex.org/A5101937305 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0622-1969 |
| authorships[1].author.display_name | Yihong Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[1].affiliations[0].raw_affiliation_string | Sun Yat-sen University, China |
| authorships[1].institutions[0].id | https://openalex.org/I157773358 |
| authorships[1].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Sun Yat-sen University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yihong Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Sun Yat-sen University, China |
| authorships[2].author.id | https://openalex.org/A5029638279 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | L P Chen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[2].affiliations[0].raw_affiliation_string | Sun Yat-sen University, China |
| authorships[2].institutions[0].id | https://openalex.org/I157773358 |
| authorships[2].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Sun Yat-sen University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liangkun Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Sun Yat-sen University, China |
| authorships[3].author.id | https://openalex.org/A5100763625 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0751-2773 |
| authorships[3].author.display_name | Xiaoxi Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[3].affiliations[0].raw_affiliation_string | Sun Yat-sen University, China |
| authorships[3].institutions[0].id | https://openalex.org/I157773358 |
| authorships[3].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Sun Yat-sen University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xiaoxi Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Sun Yat-sen University, China |
| authorships[4].author.id | https://openalex.org/A5026622212 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3546-4070 |
| authorships[4].author.display_name | Shuo Liu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2250955327 |
| authorships[4].affiliations[0].raw_affiliation_string | Huawei, China |
| authorships[4].institutions[0].id | https://openalex.org/I2250955327 |
| authorships[4].institutions[0].ror | https://ror.org/00cmhce21 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I2250955327 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Huawei Technologies (China) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shuo Liu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Huawei, China |
| authorships[5].author.id | https://openalex.org/A5016658545 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7507-2197 |
| authorships[5].author.display_name | Jingpu Duan |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210136793 |
| authorships[5].affiliations[0].raw_affiliation_string | Peng Cheng Laboratory, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210136793 |
| authorships[5].institutions[0].ror | https://ror.org/03qdqbt06 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210136793 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Peng Cheng Laboratory |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jingpu Duan |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Peng Cheng Laboratory, China |
| authorships[6].author.id | https://openalex.org/A5031365162 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1357-3137 |
| authorships[6].author.display_name | Wenfei Wu |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[6].affiliations[0].raw_affiliation_string | Peking University, China |
| authorships[6].institutions[0].id | https://openalex.org/I20231570 |
| authorships[6].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Peking University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Wenfei Wu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Peking University, China |
| authorships[7].author.id | https://openalex.org/A5100385692 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-9943-6020 |
| authorships[7].author.display_name | Xu Chen |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[7].affiliations[0].raw_affiliation_string | Sun Yat-sen University, China |
| authorships[7].institutions[0].id | https://openalex.org/I157773358 |
| authorships[7].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Sun Yat-sen University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Xu Chen |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Sun Yat-sen University, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dl.acm.org/doi/pdf/10.1145/3677333.3678267 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Alleviating All-to-All Communication for Deep Learning Recommendation Model Inference |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10203 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9984999895095825 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Recommender Systems and Techniques |
| related_works | https://openalex.org/W2595172197, https://openalex.org/W2084856301, https://openalex.org/W2127970246, https://openalex.org/W2885125400, https://openalex.org/W1001352512, https://openalex.org/W1989889224, https://openalex.org/W4382618745, https://openalex.org/W1973775000, https://openalex.org/W2748922771, https://openalex.org/W1987128138 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3677333.3678267 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3677333.3678267 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The 53rd International Conference on Parallel Processing Workshops |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3677333.3678267 |
| primary_location.id | doi:10.1145/3677333.3678267 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3677333.3678267 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The 53rd International Conference on Parallel Processing Workshops |
| primary_location.landing_page_url | https://doi.org/10.1145/3677333.3678267 |
| publication_date | 2024-08-09 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3197870239, https://openalex.org/W4381327166, https://openalex.org/W4200559323, https://openalex.org/W3030235304 |
| referenced_works_count | 4 |
| abstract_inverted_index.a | 34 |
| abstract_inverted_index.We | 18 |
| abstract_inverted_index.an | 20 |
| abstract_inverted_index.of | 28 |
| abstract_inverted_index.to | 33, 37 |
| abstract_inverted_index.and | 9, 41 |
| abstract_inverted_index.for | 6, 46 |
| abstract_inverted_index.the | 14, 25, 29 |
| abstract_inverted_index.from | 13 |
| abstract_inverted_index.that | 23 |
| abstract_inverted_index.this | 39 |
| abstract_inverted_index.thus | 11 |
| abstract_inverted_index.DLRMs | 1 |
| abstract_inverted_index.cache | 26 |
| abstract_inverted_index.table | 31, 48 |
| abstract_inverted_index.vector | 49 |
| abstract_inverted_index.Massive | 0 |
| abstract_inverted_index.latency | 45 |
| abstract_inverted_index.propose | 19 |
| abstract_inverted_index.provide | 42 |
| abstract_inverted_index.require | 2 |
| abstract_inverted_index.switch, | 36 |
| abstract_inverted_index.systems | 5 |
| abstract_inverted_index.vectors | 32 |
| abstract_inverted_index.function | 27 |
| abstract_inverted_index.offloads | 24 |
| abstract_inverted_index.overcome | 38 |
| abstract_inverted_index.response | 44 |
| abstract_inverted_index.training | 8 |
| abstract_inverted_index.embedding | 30, 47 |
| abstract_inverted_index.requests. | 50 |
| abstract_inverted_index.suffering | 12 |
| abstract_inverted_index.all-to-all | 15 |
| abstract_inverted_index.bottleneck | 40 |
| abstract_inverted_index.inference, | 10 |
| abstract_inverted_index.multi-node | 4 |
| abstract_inverted_index.bottleneck. | 17 |
| abstract_inverted_index.distributed | 7 |
| abstract_inverted_index.large-scale | 3 |
| abstract_inverted_index.EmbedSwitch, | 22 |
| abstract_inverted_index.programmable | 35 |
| abstract_inverted_index.switch-level | 43 |
| abstract_inverted_index.architecture, | 21 |
| abstract_inverted_index.communication | 16 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.20908297 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |