ALMOND: Learning an Assembly Language Model for 0-Shot Code Obfuscation Detection Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1145/3728886
Code obfuscation is a technique used to protect software by making it difficult to understand and reverse engineer. However, it can also be exploited for malicious purposes such as code plagiarism or developing malicious programs. Learning-based techniques have achieved great success with the help of supervised learning and labeled training sets. However, when faced with real-life environments involving privately developed and undisclosed obfuscators, these supervised learning methods often raise concerns about generalizability and robustness when facing unseen and unknown classes of obfuscation techniques. This paper presents ALMOND, a novel zero-shot approach for detecting code obfuscation in binary executables. Unlike previous supervised learning methods, ALMOND does not require labeled obfuscated samples for training. Instead, it leverages a language model pre-trained only on unobfuscated assembly code to identify the linguistic deviations introduced by obfuscation. The key innovation is the use of ”error-perplexity” as a detection metric, which focuses on tokens the model fails to predict. Continuous Error Perplexity further enhances this to capture consecutive prediction errors characteristic of obfuscated sequences. Experiments show ALMOND achieves 96.3% accuracy on unseen obfuscation methods, outperforming supervised baselines. On real-world malware samples, it demonstrates an AUC of 0.869 and significantly outperforms the supervise-learning baseline. Our Dataset, pre-trained model, and code of evaluation will be available at https://github.com/palmtreemodel/ALMOND
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3728886
- OA Status
- hybrid
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411523109
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411523109Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3728886Digital Object Identifier
- Title
-
ALMOND: Learning an Assembly Language Model for 0-Shot Code Obfuscation DetectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-22Full publication date if available
- Authors
-
Xuezixiang Li, Sheng Yü, Heng YinList of authors in order
- Landing page
-
https://doi.org/10.1145/3728886Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1145/3728886Direct OA link when available
- Concepts
-
Obfuscation, Computer science, Artificial intelligence, Perplexity, Machine learning, Opcode, Code (set theory), Source code, Executable, Assembly language, Generalizability theory, Metric (unit), Supervised learning, Language model, Natural language processing, Software, Programming language, Computer security, Engineering, Set (abstract data type), Statistics, Operations management, Mathematics, Artificial neural networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411523109 |
|---|---|
| doi | https://doi.org/10.1145/3728886 |
| ids.doi | https://doi.org/10.1145/3728886 |
| ids.openalex | https://openalex.org/W4411523109 |
| fwci | 0.0 |
| type | article |
| title | ALMOND: Learning an Assembly Language Model for 0-Shot Code Obfuscation Detection |
| biblio.issue | ISSTA |
| biblio.volume | 2 |
| biblio.last_page | 387 |
| biblio.first_page | 366 |
| topics[0].id | https://openalex.org/T11241 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9970999956130981 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Advanced Malware Detection Techniques |
| topics[1].id | https://openalex.org/T10260 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9944000244140625 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Software Engineering Research |
| topics[2].id | https://openalex.org/T12127 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9901999831199646 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Software System Performance and Reliability |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C40305131 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9281275868415833 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2616305 |
| concepts[0].display_name | Obfuscation |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8135555982589722 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6470977067947388 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C100279451 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6356903314590454 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q372193 |
| concepts[3].display_name | Perplexity |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.631607174873352 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C52173422 |
| concepts[5].level | 2 |
| concepts[5].score | 0.587118923664093 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q766483 |
| concepts[5].display_name | Opcode |
| concepts[6].id | https://openalex.org/C2776760102 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4855915904045105 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[6].display_name | Code (set theory) |
| concepts[7].id | https://openalex.org/C43126263 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4849410355091095 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q128751 |
| concepts[7].display_name | Source code |
| concepts[8].id | https://openalex.org/C160145156 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4280087947845459 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q778586 |
| concepts[8].display_name | Executable |
| concepts[9].id | https://openalex.org/C50831359 |
| concepts[9].level | 3 |
| concepts[9].score | 0.42123907804489136 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q165436 |
| concepts[9].display_name | Assembly language |
| concepts[10].id | https://openalex.org/C27158222 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41819655895233154 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5532422 |
| concepts[10].display_name | Generalizability theory |
| concepts[11].id | https://openalex.org/C176217482 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4147747755050659 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[11].display_name | Metric (unit) |
| concepts[12].id | https://openalex.org/C136389625 |
| concepts[12].level | 3 |
| concepts[12].score | 0.41181015968322754 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q334384 |
| concepts[12].display_name | Supervised learning |
| concepts[13].id | https://openalex.org/C137293760 |
| concepts[13].level | 2 |
| concepts[13].score | 0.40145522356033325 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3621696 |
| concepts[13].display_name | Language model |
| concepts[14].id | https://openalex.org/C204321447 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3847198188304901 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[14].display_name | Natural language processing |
| concepts[15].id | https://openalex.org/C2777904410 |
| concepts[15].level | 2 |
| concepts[15].score | 0.2876077890396118 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[15].display_name | Software |
| concepts[16].id | https://openalex.org/C199360897 |
| concepts[16].level | 1 |
| concepts[16].score | 0.16235238313674927 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[16].display_name | Programming language |
| concepts[17].id | https://openalex.org/C38652104 |
| concepts[17].level | 1 |
| concepts[17].score | 0.15264096856117249 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[17].display_name | Computer security |
| concepts[18].id | https://openalex.org/C127413603 |
| concepts[18].level | 0 |
| concepts[18].score | 0.07587593793869019 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[18].display_name | Engineering |
| concepts[19].id | https://openalex.org/C177264268 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[19].display_name | Set (abstract data type) |
| concepts[20].id | https://openalex.org/C105795698 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[20].display_name | Statistics |
| concepts[21].id | https://openalex.org/C21547014 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[21].display_name | Operations management |
| concepts[22].id | https://openalex.org/C33923547 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[22].display_name | Mathematics |
| concepts[23].id | https://openalex.org/C50644808 |
| concepts[23].level | 2 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[23].display_name | Artificial neural network |
| keywords[0].id | https://openalex.org/keywords/obfuscation |
| keywords[0].score | 0.9281275868415833 |
| keywords[0].display_name | Obfuscation |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8135555982589722 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6470977067947388 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/perplexity |
| keywords[3].score | 0.6356903314590454 |
| keywords[3].display_name | Perplexity |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.631607174873352 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/opcode |
| keywords[5].score | 0.587118923664093 |
| keywords[5].display_name | Opcode |
| keywords[6].id | https://openalex.org/keywords/code |
| keywords[6].score | 0.4855915904045105 |
| keywords[6].display_name | Code (set theory) |
| keywords[7].id | https://openalex.org/keywords/source-code |
| keywords[7].score | 0.4849410355091095 |
| keywords[7].display_name | Source code |
| keywords[8].id | https://openalex.org/keywords/executable |
| keywords[8].score | 0.4280087947845459 |
| keywords[8].display_name | Executable |
| keywords[9].id | https://openalex.org/keywords/assembly-language |
| keywords[9].score | 0.42123907804489136 |
| keywords[9].display_name | Assembly language |
| keywords[10].id | https://openalex.org/keywords/generalizability-theory |
| keywords[10].score | 0.41819655895233154 |
| keywords[10].display_name | Generalizability theory |
| keywords[11].id | https://openalex.org/keywords/metric |
| keywords[11].score | 0.4147747755050659 |
| keywords[11].display_name | Metric (unit) |
| keywords[12].id | https://openalex.org/keywords/supervised-learning |
| keywords[12].score | 0.41181015968322754 |
| keywords[12].display_name | Supervised learning |
| keywords[13].id | https://openalex.org/keywords/language-model |
| keywords[13].score | 0.40145522356033325 |
| keywords[13].display_name | Language model |
| keywords[14].id | https://openalex.org/keywords/natural-language-processing |
| keywords[14].score | 0.3847198188304901 |
| keywords[14].display_name | Natural language processing |
| keywords[15].id | https://openalex.org/keywords/software |
| keywords[15].score | 0.2876077890396118 |
| keywords[15].display_name | Software |
| keywords[16].id | https://openalex.org/keywords/programming-language |
| keywords[16].score | 0.16235238313674927 |
| keywords[16].display_name | Programming language |
| keywords[17].id | https://openalex.org/keywords/computer-security |
| keywords[17].score | 0.15264096856117249 |
| keywords[17].display_name | Computer security |
| keywords[18].id | https://openalex.org/keywords/engineering |
| keywords[18].score | 0.07587593793869019 |
| keywords[18].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1145/3728886 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4404663975 |
| locations[0].source.issn | 2994-970X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2994-970X |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the ACM on software engineering. |
| locations[0].source.host_organization | https://openalex.org/P4310319798 |
| locations[0].source.host_organization_name | Association for Computing Machinery |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319798 |
| locations[0].source.host_organization_lineage_names | Association for Computing Machinery |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the ACM on Software Engineering |
| locations[0].landing_page_url | https://doi.org/10.1145/3728886 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5058972082 |
| authorships[0].author.orcid | https://orcid.org/0009-0005-9713-3815 |
| authorships[0].author.display_name | Xuezixiang Li |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I103635307 |
| authorships[0].affiliations[0].raw_affiliation_string | University of California at Riverside, Riverside, USA |
| authorships[0].institutions[0].id | https://openalex.org/I103635307 |
| authorships[0].institutions[0].ror | https://ror.org/03nawhv43 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I103635307 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of California, Riverside |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xuezixiang Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of California at Riverside, Riverside, USA |
| authorships[1].author.id | https://openalex.org/A5111766129 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5189-7140 |
| authorships[1].author.display_name | Sheng Yü |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210157613 |
| authorships[1].affiliations[0].raw_affiliation_string | Deepbits Technology, Riverside, USA |
| authorships[1].institutions[0].id | https://openalex.org/I4210157613 |
| authorships[1].institutions[0].ror | https://ror.org/05ey1mh42 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210157613 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Riverside Technology (United States) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sheng Yu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Deepbits Technology, Riverside, USA |
| authorships[2].author.id | https://openalex.org/A5073376805 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8942-7742 |
| authorships[2].author.display_name | Heng Yin |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I103635307 |
| authorships[2].affiliations[0].raw_affiliation_string | University of California at Riverside, Riverside, USA |
| authorships[2].institutions[0].id | https://openalex.org/I103635307 |
| authorships[2].institutions[0].ror | https://ror.org/03nawhv43 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I103635307 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of California, Riverside |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Heng Yin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of California at Riverside, Riverside, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1145/3728886 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ALMOND: Learning an Assembly Language Model for 0-Shot Code Obfuscation Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11241 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9970999956130981 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Advanced Malware Detection Techniques |
| related_works | https://openalex.org/W3211159634, https://openalex.org/W4388157251, https://openalex.org/W3126761238, https://openalex.org/W4214835142, https://openalex.org/W2511120801, https://openalex.org/W2947729775, https://openalex.org/W982030367, https://openalex.org/W2008514616, https://openalex.org/W2498457261, https://openalex.org/W4392639644 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3728886 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4404663975 |
| best_oa_location.source.issn | 2994-970X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2994-970X |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the ACM on software engineering. |
| best_oa_location.source.host_organization | https://openalex.org/P4310319798 |
| best_oa_location.source.host_organization_name | Association for Computing Machinery |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319798 |
| best_oa_location.source.host_organization_lineage_names | Association for Computing Machinery |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the ACM on Software Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3728886 |
| primary_location.id | doi:10.1145/3728886 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4404663975 |
| primary_location.source.issn | 2994-970X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2994-970X |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the ACM on software engineering. |
| primary_location.source.host_organization | https://openalex.org/P4310319798 |
| primary_location.source.host_organization_name | Association for Computing Machinery |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319798 |
| primary_location.source.host_organization_lineage_names | Association for Computing Machinery |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the ACM on Software Engineering |
| primary_location.landing_page_url | https://doi.org/10.1145/3728886 |
| publication_date | 2025-06-22 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4311166089, https://openalex.org/W2887787078, https://openalex.org/W2947883149, https://openalex.org/W2926178846, https://openalex.org/W2767094836, https://openalex.org/W3003243900, https://openalex.org/W4401537194, https://openalex.org/W3005641848, https://openalex.org/W2076758681, https://openalex.org/W4281744374, https://openalex.org/W4308632257, https://openalex.org/W4247464060, https://openalex.org/W4234480284, https://openalex.org/W2810872891, https://openalex.org/W4226128225, https://openalex.org/W3133719257, https://openalex.org/W4362615084, https://openalex.org/W2150423842, https://openalex.org/W2901689459, https://openalex.org/W2885072546, https://openalex.org/W2282866165, https://openalex.org/W4401113920, https://openalex.org/W3194813479, https://openalex.org/W4313203541, https://openalex.org/W3089028909, https://openalex.org/W2560204201, https://openalex.org/W2314464932, https://openalex.org/W4391887109, https://openalex.org/W4281385582, https://openalex.org/W2144211451, https://openalex.org/W1565441035, https://openalex.org/W4285271823, https://openalex.org/W2992467173, https://openalex.org/W4285586654, https://openalex.org/W3198685994, https://openalex.org/W2962830343, https://openalex.org/W2525778437, https://openalex.org/W2945413494, https://openalex.org/W2024170198, https://openalex.org/W2997915791, https://openalex.org/W2963804400, https://openalex.org/W3089412163, https://openalex.org/W3129166376, https://openalex.org/W4231934124, https://openalex.org/W1516836232, https://openalex.org/W4398239361 |
| referenced_works_count | 46 |
| abstract_inverted_index.a | 3, 87, 115, 141 |
| abstract_inverted_index.On | 181 |
| abstract_inverted_index.an | 187 |
| abstract_inverted_index.as | 28, 140 |
| abstract_inverted_index.at | 208 |
| abstract_inverted_index.be | 22, 206 |
| abstract_inverted_index.by | 9, 130 |
| abstract_inverted_index.in | 95 |
| abstract_inverted_index.is | 2, 135 |
| abstract_inverted_index.it | 11, 19, 113, 185 |
| abstract_inverted_index.of | 44, 80, 138, 165, 189, 203 |
| abstract_inverted_index.on | 120, 146, 174 |
| abstract_inverted_index.or | 31 |
| abstract_inverted_index.to | 6, 13, 124, 151, 159 |
| abstract_inverted_index.AUC | 188 |
| abstract_inverted_index.Our | 197 |
| abstract_inverted_index.The | 132 |
| abstract_inverted_index.and | 15, 47, 60, 72, 77, 191, 201 |
| abstract_inverted_index.can | 20 |
| abstract_inverted_index.for | 24, 91, 110 |
| abstract_inverted_index.key | 133 |
| abstract_inverted_index.not | 105 |
| abstract_inverted_index.the | 42, 126, 136, 148, 194 |
| abstract_inverted_index.use | 137 |
| abstract_inverted_index.Code | 0 |
| abstract_inverted_index.This | 83 |
| abstract_inverted_index.also | 21 |
| abstract_inverted_index.code | 29, 93, 123, 202 |
| abstract_inverted_index.does | 104 |
| abstract_inverted_index.have | 37 |
| abstract_inverted_index.help | 43 |
| abstract_inverted_index.only | 119 |
| abstract_inverted_index.show | 169 |
| abstract_inverted_index.such | 27 |
| abstract_inverted_index.this | 158 |
| abstract_inverted_index.used | 5 |
| abstract_inverted_index.when | 52, 74 |
| abstract_inverted_index.will | 205 |
| abstract_inverted_index.with | 41, 54 |
| abstract_inverted_index.0.869 | 190 |
| abstract_inverted_index.96.3% | 172 |
| abstract_inverted_index.Error | 154 |
| abstract_inverted_index.about | 70 |
| abstract_inverted_index.faced | 53 |
| abstract_inverted_index.fails | 150 |
| abstract_inverted_index.great | 39 |
| abstract_inverted_index.model | 117, 149 |
| abstract_inverted_index.novel | 88 |
| abstract_inverted_index.often | 67 |
| abstract_inverted_index.paper | 84 |
| abstract_inverted_index.raise | 68 |
| abstract_inverted_index.sets. | 50 |
| abstract_inverted_index.these | 63 |
| abstract_inverted_index.which | 144 |
| abstract_inverted_index.ALMOND | 103, 170 |
| abstract_inverted_index.Unlike | 98 |
| abstract_inverted_index.binary | 96 |
| abstract_inverted_index.errors | 163 |
| abstract_inverted_index.facing | 75 |
| abstract_inverted_index.making | 10 |
| abstract_inverted_index.model, | 200 |
| abstract_inverted_index.tokens | 147 |
| abstract_inverted_index.unseen | 76, 175 |
| abstract_inverted_index.ALMOND, | 86 |
| abstract_inverted_index.capture | 160 |
| abstract_inverted_index.classes | 79 |
| abstract_inverted_index.focuses | 145 |
| abstract_inverted_index.further | 156 |
| abstract_inverted_index.labeled | 48, 107 |
| abstract_inverted_index.malware | 183 |
| abstract_inverted_index.methods | 66 |
| abstract_inverted_index.metric, | 143 |
| abstract_inverted_index.protect | 7 |
| abstract_inverted_index.require | 106 |
| abstract_inverted_index.reverse | 16 |
| abstract_inverted_index.samples | 109 |
| abstract_inverted_index.success | 40 |
| abstract_inverted_index.unknown | 78 |
| abstract_inverted_index.Dataset, | 198 |
| abstract_inverted_index.However, | 18, 51 |
| abstract_inverted_index.Instead, | 112 |
| abstract_inverted_index.accuracy | 173 |
| abstract_inverted_index.achieved | 38 |
| abstract_inverted_index.achieves | 171 |
| abstract_inverted_index.approach | 90 |
| abstract_inverted_index.assembly | 122 |
| abstract_inverted_index.concerns | 69 |
| abstract_inverted_index.enhances | 157 |
| abstract_inverted_index.identify | 125 |
| abstract_inverted_index.language | 116 |
| abstract_inverted_index.learning | 46, 65, 101 |
| abstract_inverted_index.methods, | 102, 177 |
| abstract_inverted_index.predict. | 152 |
| abstract_inverted_index.presents | 85 |
| abstract_inverted_index.previous | 99 |
| abstract_inverted_index.purposes | 26 |
| abstract_inverted_index.samples, | 184 |
| abstract_inverted_index.software | 8 |
| abstract_inverted_index.training | 49 |
| abstract_inverted_index.available | 207 |
| abstract_inverted_index.baseline. | 196 |
| abstract_inverted_index.detecting | 92 |
| abstract_inverted_index.detection | 142 |
| abstract_inverted_index.developed | 59 |
| abstract_inverted_index.difficult | 12 |
| abstract_inverted_index.engineer. | 17 |
| abstract_inverted_index.exploited | 23 |
| abstract_inverted_index.involving | 57 |
| abstract_inverted_index.leverages | 114 |
| abstract_inverted_index.malicious | 25, 33 |
| abstract_inverted_index.privately | 58 |
| abstract_inverted_index.programs. | 34 |
| abstract_inverted_index.real-life | 55 |
| abstract_inverted_index.technique | 4 |
| abstract_inverted_index.training. | 111 |
| abstract_inverted_index.zero-shot | 89 |
| abstract_inverted_index.Continuous | 153 |
| abstract_inverted_index.Perplexity | 155 |
| abstract_inverted_index.baselines. | 180 |
| abstract_inverted_index.developing | 32 |
| abstract_inverted_index.deviations | 128 |
| abstract_inverted_index.evaluation | 204 |
| abstract_inverted_index.innovation | 134 |
| abstract_inverted_index.introduced | 129 |
| abstract_inverted_index.linguistic | 127 |
| abstract_inverted_index.obfuscated | 108, 166 |
| abstract_inverted_index.plagiarism | 30 |
| abstract_inverted_index.prediction | 162 |
| abstract_inverted_index.real-world | 182 |
| abstract_inverted_index.robustness | 73 |
| abstract_inverted_index.sequences. | 167 |
| abstract_inverted_index.supervised | 45, 64, 100, 179 |
| abstract_inverted_index.techniques | 36 |
| abstract_inverted_index.understand | 14 |
| abstract_inverted_index.Experiments | 168 |
| abstract_inverted_index.consecutive | 161 |
| abstract_inverted_index.obfuscation | 1, 81, 94, 176 |
| abstract_inverted_index.outperforms | 193 |
| abstract_inverted_index.pre-trained | 118, 199 |
| abstract_inverted_index.techniques. | 82 |
| abstract_inverted_index.undisclosed | 61 |
| abstract_inverted_index.demonstrates | 186 |
| abstract_inverted_index.environments | 56 |
| abstract_inverted_index.executables. | 97 |
| abstract_inverted_index.obfuscation. | 131 |
| abstract_inverted_index.obfuscators, | 62 |
| abstract_inverted_index.unobfuscated | 121 |
| abstract_inverted_index.outperforming | 178 |
| abstract_inverted_index.significantly | 192 |
| abstract_inverted_index.Learning-based | 35 |
| abstract_inverted_index.characteristic | 164 |
| abstract_inverted_index.generalizability | 71 |
| abstract_inverted_index.supervise-learning | 195 |
| abstract_inverted_index.”error-perplexity” | 139 |
| abstract_inverted_index.https://github.com/palmtreemodel/ALMOND | 209 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.6399999856948853 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.29008709 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |