Alphazzle: Jigsaw Puzzle Solver with Deep Monte-Carlo Tree Search Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2302.00384
Solving jigsaw puzzles requires to grasp the visual features of a sequence of patches and to explore efficiently a solution space that grows exponentially with the sequence length. Therefore, visual deep reinforcement learning (DRL) should answer this problem more efficiently than optimization solvers coupled with neural networks. Based on this assumption, we introduce Alphazzle, a reassembly algorithm based on single-player Monte Carlo Tree Search (MCTS). A major difference with DRL algorithms lies in the unavailability of game reward for MCTS, and we show how to estimate it from the visual input with neural networks. This constraint is induced by the puzzle-solving task and dramatically adds to the task complexity (and interest!). We perform an in-deep ablation study that shows the importance of MCTS and the neural networks working together. We achieve excellent results and get exciting insights into the combination of DRL and visual feature learning.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2302.00384
- https://arxiv.org/pdf/2302.00384
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4319049496
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4319049496Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2302.00384Digital Object Identifier
- Title
-
Alphazzle: Jigsaw Puzzle Solver with Deep Monte-Carlo Tree SearchWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-02-01Full publication date if available
- Authors
-
Marie-Morgane Paumard, Hedi Tabia, David PicardList of authors in order
- Landing page
-
https://arxiv.org/abs/2302.00384Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2302.00384Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2302.00384Direct OA link when available
- Concepts
-
Monte Carlo tree search, Computer science, Jigsaw, Tree (set theory), Artificial intelligence, Task (project management), Artificial neural network, Reinforcement learning, Sequence (biology), GRASP, Feature (linguistics), Deep neural networks, Unavailability, Machine learning, Monte Carlo method, Mathematics, Economics, Philosophy, Programming language, Mathematics education, Statistics, Genetics, Management, Linguistics, Mathematical analysis, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4319049496 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2302.00384 |
| ids.doi | https://doi.org/10.48550/arxiv.2302.00384 |
| ids.openalex | https://openalex.org/W4319049496 |
| fwci | |
| type | preprint |
| title | Alphazzle: Jigsaw Puzzle Solver with Deep Monte-Carlo Tree Search |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14339 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image Processing and 3D Reconstruction |
| topics[1].id | https://openalex.org/T12364 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.984000027179718 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1912 |
| topics[1].subfield.display_name | Space and Planetary Science |
| topics[1].display_name | Archaeological Research and Protection |
| topics[2].id | https://openalex.org/T10601 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9715999960899353 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Handwritten Text Recognition Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C46149586 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7837921977043152 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11785332 |
| concepts[0].display_name | Monte Carlo tree search |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7498369216918945 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2779405079 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6824823617935181 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q356040 |
| concepts[2].display_name | Jigsaw |
| concepts[3].id | https://openalex.org/C113174947 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5801160335540771 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2859736 |
| concepts[3].display_name | Tree (set theory) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5517001748085022 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C2780451532 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5194544196128845 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[5].display_name | Task (project management) |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5042439699172974 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C97541855 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4921194911003113 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[7].display_name | Reinforcement learning |
| concepts[8].id | https://openalex.org/C2778112365 |
| concepts[8].level | 2 |
| concepts[8].score | 0.46120685338974 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3511065 |
| concepts[8].display_name | Sequence (biology) |
| concepts[9].id | https://openalex.org/C171268870 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4609416723251343 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1486676 |
| concepts[9].display_name | GRASP |
| concepts[10].id | https://openalex.org/C2776401178 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4396446645259857 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[10].display_name | Feature (linguistics) |
| concepts[11].id | https://openalex.org/C2984842247 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4248623847961426 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[11].display_name | Deep neural networks |
| concepts[12].id | https://openalex.org/C2780505938 |
| concepts[12].level | 2 |
| concepts[12].score | 0.41850659251213074 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q17093282 |
| concepts[12].display_name | Unavailability |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3535901606082916 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C19499675 |
| concepts[14].level | 2 |
| concepts[14].score | 0.3355317711830139 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[14].display_name | Monte Carlo method |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.13605794310569763 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C162324750 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[16].display_name | Economics |
| concepts[17].id | https://openalex.org/C138885662 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[17].display_name | Philosophy |
| concepts[18].id | https://openalex.org/C199360897 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[18].display_name | Programming language |
| concepts[19].id | https://openalex.org/C145420912 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q853077 |
| concepts[19].display_name | Mathematics education |
| concepts[20].id | https://openalex.org/C105795698 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[20].display_name | Statistics |
| concepts[21].id | https://openalex.org/C54355233 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[21].display_name | Genetics |
| concepts[22].id | https://openalex.org/C187736073 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[22].display_name | Management |
| concepts[23].id | https://openalex.org/C41895202 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[23].display_name | Linguistics |
| concepts[24].id | https://openalex.org/C134306372 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[24].display_name | Mathematical analysis |
| concepts[25].id | https://openalex.org/C86803240 |
| concepts[25].level | 0 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[25].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/monte-carlo-tree-search |
| keywords[0].score | 0.7837921977043152 |
| keywords[0].display_name | Monte Carlo tree search |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7498369216918945 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/jigsaw |
| keywords[2].score | 0.6824823617935181 |
| keywords[2].display_name | Jigsaw |
| keywords[3].id | https://openalex.org/keywords/tree |
| keywords[3].score | 0.5801160335540771 |
| keywords[3].display_name | Tree (set theory) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5517001748085022 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/task |
| keywords[5].score | 0.5194544196128845 |
| keywords[5].display_name | Task (project management) |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.5042439699172974 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[7].score | 0.4921194911003113 |
| keywords[7].display_name | Reinforcement learning |
| keywords[8].id | https://openalex.org/keywords/sequence |
| keywords[8].score | 0.46120685338974 |
| keywords[8].display_name | Sequence (biology) |
| keywords[9].id | https://openalex.org/keywords/grasp |
| keywords[9].score | 0.4609416723251343 |
| keywords[9].display_name | GRASP |
| keywords[10].id | https://openalex.org/keywords/feature |
| keywords[10].score | 0.4396446645259857 |
| keywords[10].display_name | Feature (linguistics) |
| keywords[11].id | https://openalex.org/keywords/deep-neural-networks |
| keywords[11].score | 0.4248623847961426 |
| keywords[11].display_name | Deep neural networks |
| keywords[12].id | https://openalex.org/keywords/unavailability |
| keywords[12].score | 0.41850659251213074 |
| keywords[12].display_name | Unavailability |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.3535901606082916 |
| keywords[13].display_name | Machine learning |
| keywords[14].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[14].score | 0.3355317711830139 |
| keywords[14].display_name | Monte Carlo method |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.13605794310569763 |
| keywords[15].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2302.00384 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2302.00384 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2302.00384 |
| locations[1].id | doi:10.48550/arxiv.2302.00384 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2302.00384 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5078774069 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4319-0321 |
| authorships[0].author.display_name | Marie-Morgane Paumard |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Paumard, Marie-Morgane |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5112414982 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Hedi Tabia |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tabia, Hedi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5002574498 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6296-4222 |
| authorships[2].author.display_name | David Picard |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Picard, David |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2302.00384 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Alphazzle: Jigsaw Puzzle Solver with Deep Monte-Carlo Tree Search |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T14339 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image Processing and 3D Reconstruction |
| related_works | https://openalex.org/W4313442009, https://openalex.org/W3106062205, https://openalex.org/W3083639670, https://openalex.org/W4237235066, https://openalex.org/W2291971009, https://openalex.org/W2026539069, https://openalex.org/W207884067, https://openalex.org/W2614642134, https://openalex.org/W3112136298, https://openalex.org/W3127016596 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2302.00384 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2302.00384 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2302.00384 |
| primary_location.id | pmh:oai:arXiv.org:2302.00384 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2302.00384 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2302.00384 |
| publication_date | 2023-02-01 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 65 |
| abstract_inverted_index.a | 10, 18, 54 |
| abstract_inverted_index.We | 111, 129 |
| abstract_inverted_index.an | 113 |
| abstract_inverted_index.by | 98 |
| abstract_inverted_index.in | 72 |
| abstract_inverted_index.is | 96 |
| abstract_inverted_index.it | 86 |
| abstract_inverted_index.of | 9, 12, 75, 121, 140 |
| abstract_inverted_index.on | 48, 58 |
| abstract_inverted_index.to | 4, 15, 84, 105 |
| abstract_inverted_index.we | 51, 81 |
| abstract_inverted_index.DRL | 69, 141 |
| abstract_inverted_index.and | 14, 80, 102, 123, 133, 142 |
| abstract_inverted_index.for | 78 |
| abstract_inverted_index.get | 134 |
| abstract_inverted_index.how | 83 |
| abstract_inverted_index.the | 6, 25, 73, 88, 99, 106, 119, 124, 138 |
| abstract_inverted_index.(and | 109 |
| abstract_inverted_index.MCTS | 122 |
| abstract_inverted_index.This | 94 |
| abstract_inverted_index.Tree | 62 |
| abstract_inverted_index.adds | 104 |
| abstract_inverted_index.deep | 30 |
| abstract_inverted_index.from | 87 |
| abstract_inverted_index.game | 76 |
| abstract_inverted_index.into | 137 |
| abstract_inverted_index.lies | 71 |
| abstract_inverted_index.more | 38 |
| abstract_inverted_index.show | 82 |
| abstract_inverted_index.task | 101, 107 |
| abstract_inverted_index.than | 40 |
| abstract_inverted_index.that | 21, 117 |
| abstract_inverted_index.this | 36, 49 |
| abstract_inverted_index.with | 24, 44, 68, 91 |
| abstract_inverted_index.(DRL) | 33 |
| abstract_inverted_index.Based | 47 |
| abstract_inverted_index.Carlo | 61 |
| abstract_inverted_index.MCTS, | 79 |
| abstract_inverted_index.Monte | 60 |
| abstract_inverted_index.based | 57 |
| abstract_inverted_index.grasp | 5 |
| abstract_inverted_index.grows | 22 |
| abstract_inverted_index.input | 90 |
| abstract_inverted_index.major | 66 |
| abstract_inverted_index.shows | 118 |
| abstract_inverted_index.space | 20 |
| abstract_inverted_index.study | 116 |
| abstract_inverted_index.Search | 63 |
| abstract_inverted_index.answer | 35 |
| abstract_inverted_index.jigsaw | 1 |
| abstract_inverted_index.neural | 45, 92, 125 |
| abstract_inverted_index.reward | 77 |
| abstract_inverted_index.should | 34 |
| abstract_inverted_index.visual | 7, 29, 89, 143 |
| abstract_inverted_index.(MCTS). | 64 |
| abstract_inverted_index.Solving | 0 |
| abstract_inverted_index.achieve | 130 |
| abstract_inverted_index.coupled | 43 |
| abstract_inverted_index.explore | 16 |
| abstract_inverted_index.feature | 144 |
| abstract_inverted_index.in-deep | 114 |
| abstract_inverted_index.induced | 97 |
| abstract_inverted_index.length. | 27 |
| abstract_inverted_index.patches | 13 |
| abstract_inverted_index.perform | 112 |
| abstract_inverted_index.problem | 37 |
| abstract_inverted_index.puzzles | 2 |
| abstract_inverted_index.results | 132 |
| abstract_inverted_index.solvers | 42 |
| abstract_inverted_index.working | 127 |
| abstract_inverted_index.ablation | 115 |
| abstract_inverted_index.estimate | 85 |
| abstract_inverted_index.exciting | 135 |
| abstract_inverted_index.features | 8 |
| abstract_inverted_index.insights | 136 |
| abstract_inverted_index.learning | 32 |
| abstract_inverted_index.networks | 126 |
| abstract_inverted_index.requires | 3 |
| abstract_inverted_index.sequence | 11, 26 |
| abstract_inverted_index.solution | 19 |
| abstract_inverted_index.algorithm | 56 |
| abstract_inverted_index.excellent | 131 |
| abstract_inverted_index.introduce | 52 |
| abstract_inverted_index.learning. | 145 |
| abstract_inverted_index.networks. | 46, 93 |
| abstract_inverted_index.together. | 128 |
| abstract_inverted_index.Alphazzle, | 53 |
| abstract_inverted_index.Therefore, | 28 |
| abstract_inverted_index.algorithms | 70 |
| abstract_inverted_index.complexity | 108 |
| abstract_inverted_index.constraint | 95 |
| abstract_inverted_index.difference | 67 |
| abstract_inverted_index.importance | 120 |
| abstract_inverted_index.reassembly | 55 |
| abstract_inverted_index.assumption, | 50 |
| abstract_inverted_index.combination | 139 |
| abstract_inverted_index.efficiently | 17, 39 |
| abstract_inverted_index.interest!). | 110 |
| abstract_inverted_index.dramatically | 103 |
| abstract_inverted_index.optimization | 41 |
| abstract_inverted_index.exponentially | 23 |
| abstract_inverted_index.reinforcement | 31 |
| abstract_inverted_index.single-player | 59 |
| abstract_inverted_index.puzzle-solving | 100 |
| abstract_inverted_index.unavailability | 74 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |