Altered brain structural networks in the APP/PS1 mice: evidence from multi-shell diffusion imaging Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.3389/conf.fnins.2017.94.00023
Event Abstract Back to Event Altered brain structural networks in the APP/PS1 mice: evidence from multi-shell diffusion imaging Changhong Li1*, Rukun Hinz1, Lore Peeters1, Jelle Praet1, Marleen Verhoye1, Maarten Naeyaert1, Annemie Van Der Linden1 and Georgios A. Keliris1 1 University of Antwerp, Belgium Alzheimer’s disease is one of the most common neurodegenerative diseases characterized by cognitive deficits, memory loss and brain cerebral atrophy. Numerous studies suggested that Amyloid β (Aβ) and tau protein are key elements during the development of the disease. The APP/PS1 is one of the most widely used transgenic mouse models in AD-related research. In this model, the expression of human APP transgene is almost 3-fold higher than endogenous murine APP and mice develop many AD-like deficits including white matter alterations that underlie the connectivity patterns of the brain. Diffusion weighted magnetic resonance imaging (dwMRI) is a technique allowing the investigation of the brain white matter microstructures. Application of graph theoretical approaches to dwMRI provides a new approach to identify the altered network properties reflected in graph parameters including small-world attributes, global and nodal properties and rich club organization. In humans, many studies already demonstrated the altered network properties in AD patients. However, few studies used graph theory to detect network differences in mouse models to study therapeutic approaches. In this study, we used 19 male transgenic APP/PS1 mice and 20 male WT C57BL6/J mice at age of 8 months as subjects and acquired seven b-values (400, 800, 1200, 1600, 2000, 2400, and 2800 s/mm2), a total of 60 different diffusion gradient directions for each b-value, using a 7T Pharmascan MRI scanner (Bruker, Germany). Diffusion imaging processing and analysis were conducted using MRtrix3 and ANTs and whole brain tractography was terminated if angle > 45° or fractional anisotropy (FA) < 0.2. Then, we used a brain template with 236 ROIs to define network nodes and used the logarithm of the estimated numbers of streamlines (NOS) between nodes as the weights of network connections. In this way, we constructed the average network for each mouse group. Then, we subdivided the areas into hub and non-hub regions based on their degree and into five brain modules (Isocortex, Pallium, Sub-pallium, Diencephalon, Midbrain and Hindbrain) based on previous literature and compared the connectivity patterns between each type of connection (rich club, feeder, local). We found that the brain structural networks in both groups (APP/PS1 and WT) demonstrated small-world properties. Comparing across groups, the clustering coefficient and normalized shortest path length of the APP/PS1 mice were significantly decreased in comparison to WT. In addition, nodal properties of some areas such as the somatosensory and cingulate cortex demonstrated increased nodal strength in the AD-model mice. Acknowledgements This study is supported by the Chinese Scholarship Council (CSC), the FWO grant G048917N, G057615N, and the IWT O&O grant A12/0461, A14/0554. Keywords: Alzheimer Disease, graph theoretical analysis, Diffusion Magnetic Resonance Imaging, APPPS1 mice, modular organization, Small world topology Conference: 12th National Congress of the Belgian Society for Neuroscience, Gent, Belgium, 22 May - 22 May, 2017. Presentation Type: Poster Presentation Topic: Disorders of the Nervous System Citation: Li C, Hinz R, Peeters L, Praet J, Verhoye M, Naeyaert M, Van Der Linden A and Keliris GA (2019). Altered brain structural networks in the APP/PS1 mice: evidence from multi-shell diffusion imaging. Front. Neurosci. Conference Abstract: 12th National Congress of the Belgian Society for Neuroscience. doi: 10.3389/conf.fnins.2017.94.00023 Copyright: The abstracts in this collection have not been subject to any Frontiers peer review or checks, and are not endorsed by Frontiers. They are made available through the Frontiers publishing platform as a service to conference organizers and presenters. The copyright in the individual abstracts is owned by the author of each abstract or his/her employer unless otherwise stated. Each abstract, as well as the collection of abstracts, are published under a Creative Commons CC-BY 4.0 (attribution) licence (https://creativecommons.org/licenses/by/4.0/) and may thus be reproduced, translated, adapted and be the subject of derivative works provided the authors and Frontiers are attributed. For Frontiers’ terms and conditions please see https://www.frontiersin.org/legal/terms-and-conditions. Received: 02 May 2017; Published Online: 25 Jan 2019. * Correspondence: Mr. Changhong Li, University of Antwerp, Wilrijk, 2610, Belgium, [email protected] Login Required This action requires you to be registered with Frontiers and logged in. To register or login click here. Abstract Info Abstract The Authors in Frontiers Changhong Li Rukun Hinz Lore Peeters Jelle Praet Marleen Verhoye Maarten Naeyaert Annemie Van Der Linden Georgios A Keliris Google Changhong Li Rukun Hinz Lore Peeters Jelle Praet Marleen Verhoye Maarten Naeyaert Annemie Van Der Linden Georgios A Keliris Google Scholar Changhong Li Rukun Hinz Lore Peeters Jelle Praet Marleen Verhoye Maarten Naeyaert Annemie Van Der Linden Georgios A Keliris PubMed Changhong Li Rukun Hinz Lore Peeters Jelle Praet Marleen Verhoye Maarten Naeyaert Annemie Van Der Linden Georgios A Keliris Related Article in Frontiers Google Scholar PubMed Abstract Close Back to top Javascript is disabled. Please enable Javascript in your browser settings in order to see all the content on this page.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/conf.fnins.2017.94.00023
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2912145138
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2912145138Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/conf.fnins.2017.94.00023Digital Object Identifier
- Title
-
Altered brain structural networks in the APP/PS1 mice: evidence from multi-shell diffusion imagingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-01-01Full publication date if available
- Authors
-
Changhong Li, Rukun Hinz, Lore M. Peeters, Jelle Praet, Marleen Verhoye, Maarten Naeyaert, Annemie Van der Linden, Georgios A. KelirisList of authors in order
- Landing page
-
https://doi.org/10.3389/conf.fnins.2017.94.00023Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3389/conf.fnins.2017.94.00023Direct OA link when available
- Concepts
-
White matter, Genetically modified mouse, Diffusion MRI, Neuroscience, Transgene, Atrophy, Psychology, Magnetic resonance imaging, Diffusion imaging, Disease, Biology, Medicine, Pathology, Gene, Genetics, RadiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2912145138 |
|---|---|
| doi | https://doi.org/10.3389/conf.fnins.2017.94.00023 |
| ids.doi | https://doi.org/10.3389/conf.fnins.2017.94.00023 |
| ids.mag | 2912145138 |
| ids.openalex | https://openalex.org/W2912145138 |
| fwci | 0.0 |
| type | article |
| title | Altered brain structural networks in the APP/PS1 mice: evidence from multi-shell diffusion imaging |
| biblio.issue | |
| biblio.volume | 11 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11304 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Advanced Neuroimaging Techniques and Applications |
| topics[1].id | https://openalex.org/T10086 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9894999861717224 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2737 |
| topics[1].subfield.display_name | Physiology |
| topics[1].display_name | Alzheimer's disease research and treatments |
| topics[2].id | https://openalex.org/T10241 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9736999869346619 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Functional Brain Connectivity Studies |
| is_xpac | False |
| apc_list.value | 2950 |
| apc_list.currency | USD |
| apc_list.value_usd | 2950 |
| apc_paid.value | 2950 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2950 |
| concepts[0].id | https://openalex.org/C2781192897 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7232970595359802 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q822050 |
| concepts[0].display_name | White matter |
| concepts[1].id | https://openalex.org/C141035611 |
| concepts[1].level | 4 |
| concepts[1].score | 0.6701362133026123 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5532934 |
| concepts[1].display_name | Genetically modified mouse |
| concepts[2].id | https://openalex.org/C149550507 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6632436513900757 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q899360 |
| concepts[2].display_name | Diffusion MRI |
| concepts[3].id | https://openalex.org/C169760540 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6412716507911682 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[3].display_name | Neuroscience |
| concepts[4].id | https://openalex.org/C102230213 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5172680020332336 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q430117 |
| concepts[4].display_name | Transgene |
| concepts[5].id | https://openalex.org/C2781172350 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46653395891189575 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q194520 |
| concepts[5].display_name | Atrophy |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.45522889494895935 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| concepts[7].id | https://openalex.org/C143409427 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45018234848976135 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q161238 |
| concepts[7].display_name | Magnetic resonance imaging |
| concepts[8].id | https://openalex.org/C2992283565 |
| concepts[8].level | 4 |
| concepts[8].score | 0.4150989055633545 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q899360 |
| concepts[8].display_name | Diffusion imaging |
| concepts[9].id | https://openalex.org/C2779134260 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41207098960876465 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[9].display_name | Disease |
| concepts[10].id | https://openalex.org/C86803240 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3360030949115753 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[10].display_name | Biology |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.33345067501068115 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C142724271 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3106343746185303 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[12].display_name | Pathology |
| concepts[13].id | https://openalex.org/C104317684 |
| concepts[13].level | 2 |
| concepts[13].score | 0.1065717339515686 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[13].display_name | Gene |
| concepts[14].id | https://openalex.org/C54355233 |
| concepts[14].level | 1 |
| concepts[14].score | 0.10422739386558533 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[14].display_name | Genetics |
| concepts[15].id | https://openalex.org/C126838900 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[15].display_name | Radiology |
| keywords[0].id | https://openalex.org/keywords/white-matter |
| keywords[0].score | 0.7232970595359802 |
| keywords[0].display_name | White matter |
| keywords[1].id | https://openalex.org/keywords/genetically-modified-mouse |
| keywords[1].score | 0.6701362133026123 |
| keywords[1].display_name | Genetically modified mouse |
| keywords[2].id | https://openalex.org/keywords/diffusion-mri |
| keywords[2].score | 0.6632436513900757 |
| keywords[2].display_name | Diffusion MRI |
| keywords[3].id | https://openalex.org/keywords/neuroscience |
| keywords[3].score | 0.6412716507911682 |
| keywords[3].display_name | Neuroscience |
| keywords[4].id | https://openalex.org/keywords/transgene |
| keywords[4].score | 0.5172680020332336 |
| keywords[4].display_name | Transgene |
| keywords[5].id | https://openalex.org/keywords/atrophy |
| keywords[5].score | 0.46653395891189575 |
| keywords[5].display_name | Atrophy |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.45522889494895935 |
| keywords[6].display_name | Psychology |
| keywords[7].id | https://openalex.org/keywords/magnetic-resonance-imaging |
| keywords[7].score | 0.45018234848976135 |
| keywords[7].display_name | Magnetic resonance imaging |
| keywords[8].id | https://openalex.org/keywords/diffusion-imaging |
| keywords[8].score | 0.4150989055633545 |
| keywords[8].display_name | Diffusion imaging |
| keywords[9].id | https://openalex.org/keywords/disease |
| keywords[9].score | 0.41207098960876465 |
| keywords[9].display_name | Disease |
| keywords[10].id | https://openalex.org/keywords/biology |
| keywords[10].score | 0.3360030949115753 |
| keywords[10].display_name | Biology |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.33345067501068115 |
| keywords[11].display_name | Medicine |
| keywords[12].id | https://openalex.org/keywords/pathology |
| keywords[12].score | 0.3106343746185303 |
| keywords[12].display_name | Pathology |
| keywords[13].id | https://openalex.org/keywords/gene |
| keywords[13].score | 0.1065717339515686 |
| keywords[13].display_name | Gene |
| keywords[14].id | https://openalex.org/keywords/genetics |
| keywords[14].score | 0.10422739386558533 |
| keywords[14].display_name | Genetics |
| language | en |
| locations[0].id | doi:10.3389/conf.fnins.2017.94.00023 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S115201632 |
| locations[0].source.issn | 1662-453X, 1662-4548 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1662-453X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Neuroscience |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Neuroscience |
| locations[0].landing_page_url | https://doi.org/10.3389/conf.fnins.2017.94.00023 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100773993 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9067-4110 |
| authorships[0].author.display_name | Changhong Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Changhong Li |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5103736018 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Rukun Hinz |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Rukun Hinz |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5083348975 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5464-7385 |
| authorships[2].author.display_name | Lore M. Peeters |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lore Peeters |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5013264825 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9484-4532 |
| authorships[3].author.display_name | Jelle Praet |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jelle Praet |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5022264416 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6267-0611 |
| authorships[4].author.display_name | Marleen Verhoye |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Marleen Verhoye |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5083912031 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7452-5534 |
| authorships[5].author.display_name | Maarten Naeyaert |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Maarten Naeyaert |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5062985370 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2941-6520 |
| authorships[6].author.display_name | Annemie Van der Linden |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Annemie Van Der Linden |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5076030155 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6732-1261 |
| authorships[7].author.display_name | Georgios A. Keliris |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Georgios Keliris |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3389/conf.fnins.2017.94.00023 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Altered brain structural networks in the APP/PS1 mice: evidence from multi-shell diffusion imaging |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11304 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Advanced Neuroimaging Techniques and Applications |
| related_works | https://openalex.org/W2327564191, https://openalex.org/W57104752, https://openalex.org/W2364198307, https://openalex.org/W2376425756, https://openalex.org/W2001037511, https://openalex.org/W2391066511, https://openalex.org/W1977760756, https://openalex.org/W2000186706, https://openalex.org/W2327530259, https://openalex.org/W14419641 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3389/conf.fnins.2017.94.00023 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S115201632 |
| best_oa_location.source.issn | 1662-453X, 1662-4548 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1662-453X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Neuroscience |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Neuroscience |
| best_oa_location.landing_page_url | https://doi.org/10.3389/conf.fnins.2017.94.00023 |
| primary_location.id | doi:10.3389/conf.fnins.2017.94.00023 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S115201632 |
| primary_location.source.issn | 1662-453X, 1662-4548 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1662-453X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Neuroscience |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Neuroscience |
| primary_location.landing_page_url | https://doi.org/10.3389/conf.fnins.2017.94.00023 |
| publication_date | 2017-01-01 |
| publication_year | 2017 |
| referenced_works_count | 0 |
| abstract_inverted_index.* | 677 |
| abstract_inverted_index.- | 496 |
| abstract_inverted_index.1 | 38 |
| abstract_inverted_index.8 | 231 |
| abstract_inverted_index.< | 292 |
| abstract_inverted_index.> | 286 |
| abstract_inverted_index.A | 526, 733, 753, 774, 794 |
| abstract_inverted_index.a | 139, 158, 248, 260, 297, 592, 631 |
| abstract_inverted_index.02 | 669 |
| abstract_inverted_index.19 | 217 |
| abstract_inverted_index.20 | 223 |
| abstract_inverted_index.22 | 494, 497 |
| abstract_inverted_index.25 | 674 |
| abstract_inverted_index.60 | 251 |
| abstract_inverted_index.7T | 261 |
| abstract_inverted_index.A. | 36 |
| abstract_inverted_index.AD | 193 |
| abstract_inverted_index.C, | 512 |
| abstract_inverted_index.GA | 529 |
| abstract_inverted_index.In | 97, 182, 212, 326, 420 |
| abstract_inverted_index.J, | 518 |
| abstract_inverted_index.L, | 516 |
| abstract_inverted_index.Li | 511, 717, 737, 758, 778 |
| abstract_inverted_index.M, | 520, 522 |
| abstract_inverted_index.R, | 514 |
| abstract_inverted_index.To | 703 |
| abstract_inverted_index.WT | 225 |
| abstract_inverted_index.We | 382 |
| abstract_inverted_index.as | 233, 320, 428, 591, 621, 623 |
| abstract_inverted_index.at | 228 |
| abstract_inverted_index.be | 642, 647, 696 |
| abstract_inverted_index.by | 54, 447, 580, 607 |
| abstract_inverted_index.if | 284 |
| abstract_inverted_index.in | 9, 94, 168, 192, 205, 389, 416, 438, 535, 562, 601, 714, 798, 814, 818 |
| abstract_inverted_index.is | 45, 84, 106, 138, 445, 605, 809 |
| abstract_inverted_index.of | 40, 47, 79, 86, 102, 129, 144, 151, 230, 250, 311, 315, 323, 376, 409, 424, 486, 506, 551, 610, 626, 650, 683 |
| abstract_inverted_index.on | 349, 365, 825 |
| abstract_inverted_index.or | 288, 574, 613, 705 |
| abstract_inverted_index.to | 3, 155, 161, 201, 208, 303, 418, 569, 594, 695, 806, 820 |
| abstract_inverted_index.we | 215, 295, 329, 339 |
| abstract_inverted_index.β | 68 |
| abstract_inverted_index.236 | 301 |
| abstract_inverted_index.4.0 | 635 |
| abstract_inverted_index.APP | 104, 113 |
| abstract_inverted_index.Der | 32, 524, 730, 750, 771, 791 |
| abstract_inverted_index.FWO | 454 |
| abstract_inverted_index.For | 660 |
| abstract_inverted_index.IWT | 460 |
| abstract_inverted_index.Jan | 675 |
| abstract_inverted_index.Li, | 681 |
| abstract_inverted_index.MRI | 263 |
| abstract_inverted_index.May | 495, 670 |
| abstract_inverted_index.Mr. | 679 |
| abstract_inverted_index.O&O | 461 |
| abstract_inverted_index.The | 82, 560, 599, 712 |
| abstract_inverted_index.Van | 31, 523, 729, 749, 770, 790 |
| abstract_inverted_index.WT) | 394 |
| abstract_inverted_index.WT. | 419 |
| abstract_inverted_index.age | 229 |
| abstract_inverted_index.all | 822 |
| abstract_inverted_index.and | 34, 59, 70, 114, 175, 178, 222, 235, 245, 270, 276, 278, 307, 345, 352, 362, 368, 393, 404, 431, 458, 527, 576, 597, 639, 646, 656, 663, 700 |
| abstract_inverted_index.any | 570 |
| abstract_inverted_index.are | 73, 577, 583, 628, 658 |
| abstract_inverted_index.few | 196 |
| abstract_inverted_index.for | 256, 334, 490, 555 |
| abstract_inverted_index.hub | 344 |
| abstract_inverted_index.in. | 702 |
| abstract_inverted_index.key | 74 |
| abstract_inverted_index.may | 640 |
| abstract_inverted_index.new | 159 |
| abstract_inverted_index.not | 566, 578 |
| abstract_inverted_index.one | 46, 85 |
| abstract_inverted_index.see | 666, 821 |
| abstract_inverted_index.tau | 71 |
| abstract_inverted_index.the | 10, 48, 77, 80, 87, 100, 126, 130, 142, 145, 163, 188, 309, 312, 321, 331, 341, 370, 385, 401, 410, 429, 439, 448, 453, 459, 487, 507, 536, 552, 587, 602, 608, 624, 648, 654, 823 |
| abstract_inverted_index.top | 807 |
| abstract_inverted_index.was | 282 |
| abstract_inverted_index.you | 694 |
| abstract_inverted_index.(FA) | 291 |
| abstract_inverted_index.0.2. | 293 |
| abstract_inverted_index.12th | 483, 548 |
| abstract_inverted_index.2800 | 246 |
| abstract_inverted_index.45° | 287 |
| abstract_inverted_index.800, | 240 |
| abstract_inverted_index.ANTs | 277 |
| abstract_inverted_index.Back | 2, 805 |
| abstract_inverted_index.Each | 619 |
| abstract_inverted_index.Hinz | 513, 719, 739, 760, 780 |
| abstract_inverted_index.Info | 710 |
| abstract_inverted_index.Lore | 22, 720, 740, 761, 781 |
| abstract_inverted_index.May, | 498 |
| abstract_inverted_index.ROIs | 302 |
| abstract_inverted_index.They | 582 |
| abstract_inverted_index.This | 443, 691 |
| abstract_inverted_index.been | 567 |
| abstract_inverted_index.both | 390 |
| abstract_inverted_index.club | 180 |
| abstract_inverted_index.doi: | 557 |
| abstract_inverted_index.each | 257, 335, 374, 611 |
| abstract_inverted_index.five | 354 |
| abstract_inverted_index.from | 14, 540 |
| abstract_inverted_index.have | 565 |
| abstract_inverted_index.into | 343, 353 |
| abstract_inverted_index.loss | 58 |
| abstract_inverted_index.made | 584 |
| abstract_inverted_index.male | 218, 224 |
| abstract_inverted_index.many | 117, 184 |
| abstract_inverted_index.mice | 115, 221, 227, 412 |
| abstract_inverted_index.most | 49, 88 |
| abstract_inverted_index.path | 407 |
| abstract_inverted_index.peer | 572 |
| abstract_inverted_index.rich | 179 |
| abstract_inverted_index.some | 425 |
| abstract_inverted_index.such | 427 |
| abstract_inverted_index.than | 110 |
| abstract_inverted_index.that | 66, 124, 384 |
| abstract_inverted_index.this | 98, 213, 327, 563, 826 |
| abstract_inverted_index.thus | 641 |
| abstract_inverted_index.type | 375 |
| abstract_inverted_index.used | 90, 198, 216, 296, 308 |
| abstract_inverted_index.way, | 328 |
| abstract_inverted_index.well | 622 |
| abstract_inverted_index.were | 272, 413 |
| abstract_inverted_index.with | 300, 698 |
| abstract_inverted_index.your | 815 |
| abstract_inverted_index.(400, | 239 |
| abstract_inverted_index.(Aβ) | 69 |
| abstract_inverted_index.(NOS) | 317 |
| abstract_inverted_index.(rich | 378 |
| abstract_inverted_index.1200, | 241 |
| abstract_inverted_index.1600, | 242 |
| abstract_inverted_index.2000, | 243 |
| abstract_inverted_index.2017. | 499 |
| abstract_inverted_index.2017; | 671 |
| abstract_inverted_index.2019. | 676 |
| abstract_inverted_index.2400, | 244 |
| abstract_inverted_index.2610, | 686 |
| abstract_inverted_index.CC-BY | 634 |
| abstract_inverted_index.Close | 804 |
| abstract_inverted_index.Event | 0, 4 |
| abstract_inverted_index.Gent, | 492 |
| abstract_inverted_index.Jelle | 24, 722, 742, 763, 783 |
| abstract_inverted_index.Li1*, | 19 |
| abstract_inverted_index.Login | 689 |
| abstract_inverted_index.Praet | 517, 723, 743, 764, 784 |
| abstract_inverted_index.Rukun | 20, 718, 738, 759, 779 |
| abstract_inverted_index.Small | 479 |
| abstract_inverted_index.Then, | 294, 338 |
| abstract_inverted_index.Type: | 501 |
| abstract_inverted_index.angle | 285 |
| abstract_inverted_index.areas | 342, 426 |
| abstract_inverted_index.based | 348, 364 |
| abstract_inverted_index.brain | 6, 60, 146, 280, 298, 355, 386, 532 |
| abstract_inverted_index.click | 707 |
| abstract_inverted_index.club, | 379 |
| abstract_inverted_index.dwMRI | 156 |
| abstract_inverted_index.found | 383 |
| abstract_inverted_index.grant | 455, 462 |
| abstract_inverted_index.graph | 152, 169, 199, 468 |
| abstract_inverted_index.here. | 708 |
| abstract_inverted_index.human | 103 |
| abstract_inverted_index.login | 706 |
| abstract_inverted_index.mice, | 476 |
| abstract_inverted_index.mice. | 441 |
| abstract_inverted_index.mice: | 12, 538 |
| abstract_inverted_index.mouse | 92, 206, 336 |
| abstract_inverted_index.nodal | 176, 422, 436 |
| abstract_inverted_index.nodes | 306, 319 |
| abstract_inverted_index.order | 819 |
| abstract_inverted_index.owned | 606 |
| abstract_inverted_index.page. | 827 |
| abstract_inverted_index.seven | 237 |
| abstract_inverted_index.study | 209, 444 |
| abstract_inverted_index.terms | 662 |
| abstract_inverted_index.their | 350 |
| abstract_inverted_index.total | 249 |
| abstract_inverted_index.under | 630 |
| abstract_inverted_index.using | 259, 274 |
| abstract_inverted_index.white | 121, 147 |
| abstract_inverted_index.whole | 279 |
| abstract_inverted_index.works | 652 |
| abstract_inverted_index.world | 480 |
| abstract_inverted_index.(CSC), | 452 |
| abstract_inverted_index.3-fold | 108 |
| abstract_inverted_index.APPPS1 | 475 |
| abstract_inverted_index.Front. | 544 |
| abstract_inverted_index.Google | 735, 755, 800 |
| abstract_inverted_index.Hinz1, | 21 |
| abstract_inverted_index.Linden | 525, 731, 751, 772, 792 |
| abstract_inverted_index.Please | 811 |
| abstract_inverted_index.Poster | 502 |
| abstract_inverted_index.PubMed | 776, 802 |
| abstract_inverted_index.System | 509 |
| abstract_inverted_index.Topic: | 504 |
| abstract_inverted_index.across | 399 |
| abstract_inverted_index.action | 692 |
| abstract_inverted_index.almost | 107 |
| abstract_inverted_index.author | 609 |
| abstract_inverted_index.brain. | 131 |
| abstract_inverted_index.common | 50 |
| abstract_inverted_index.cortex | 433 |
| abstract_inverted_index.define | 304 |
| abstract_inverted_index.degree | 351 |
| abstract_inverted_index.detect | 202 |
| abstract_inverted_index.during | 76 |
| abstract_inverted_index.enable | 812 |
| abstract_inverted_index.global | 174 |
| abstract_inverted_index.group. | 337 |
| abstract_inverted_index.groups | 391 |
| abstract_inverted_index.higher | 109 |
| abstract_inverted_index.length | 408 |
| abstract_inverted_index.logged | 701 |
| abstract_inverted_index.matter | 122, 148 |
| abstract_inverted_index.memory | 57 |
| abstract_inverted_index.model, | 99 |
| abstract_inverted_index.models | 93, 207 |
| abstract_inverted_index.months | 232 |
| abstract_inverted_index.murine | 112 |
| abstract_inverted_index.please | 665 |
| abstract_inverted_index.review | 573 |
| abstract_inverted_index.study, | 214 |
| abstract_inverted_index.theory | 200 |
| abstract_inverted_index.unless | 616 |
| abstract_inverted_index.widely | 89 |
| abstract_inverted_index.(2019). | 530 |
| abstract_inverted_index.(dwMRI) | 137 |
| abstract_inverted_index.AD-like | 118 |
| abstract_inverted_index.APP/PS1 | 11, 83, 220, 411, 537 |
| abstract_inverted_index.Altered | 5, 531 |
| abstract_inverted_index.Amyloid | 67 |
| abstract_inverted_index.Annemie | 30, 728, 748, 769, 789 |
| abstract_inverted_index.Article | 797 |
| abstract_inverted_index.Authors | 713 |
| abstract_inverted_index.Belgian | 488, 553 |
| abstract_inverted_index.Belgium | 42 |
| abstract_inverted_index.Chinese | 449 |
| abstract_inverted_index.Commons | 633 |
| abstract_inverted_index.Council | 451 |
| abstract_inverted_index.Keliris | 528, 734, 754, 775, 795 |
| abstract_inverted_index.Linden1 | 33 |
| abstract_inverted_index.MRtrix3 | 275 |
| abstract_inverted_index.Maarten | 28, 726, 746, 767, 787 |
| abstract_inverted_index.Marleen | 26, 724, 744, 765, 785 |
| abstract_inverted_index.Nervous | 508 |
| abstract_inverted_index.Online: | 673 |
| abstract_inverted_index.Peeters | 515, 721, 741, 762, 782 |
| abstract_inverted_index.Praet1, | 25 |
| abstract_inverted_index.Related | 796 |
| abstract_inverted_index.Scholar | 756, 801 |
| abstract_inverted_index.Society | 489, 554 |
| abstract_inverted_index.Verhoye | 519, 725, 745, 766, 786 |
| abstract_inverted_index.adapted | 645 |
| abstract_inverted_index.already | 186 |
| abstract_inverted_index.altered | 164, 189 |
| abstract_inverted_index.authors | 655 |
| abstract_inverted_index.average | 332 |
| abstract_inverted_index.between | 318, 373 |
| abstract_inverted_index.browser | 816 |
| abstract_inverted_index.checks, | 575 |
| abstract_inverted_index.content | 824 |
| abstract_inverted_index.develop | 116 |
| abstract_inverted_index.disease | 44 |
| abstract_inverted_index.feeder, | 380 |
| abstract_inverted_index.groups, | 400 |
| abstract_inverted_index.his/her | 614 |
| abstract_inverted_index.humans, | 183 |
| abstract_inverted_index.imaging | 17, 136, 268 |
| abstract_inverted_index.licence | 637 |
| abstract_inverted_index.local). | 381 |
| abstract_inverted_index.modular | 477 |
| abstract_inverted_index.modules | 356 |
| abstract_inverted_index.network | 165, 190, 203, 305, 324, 333 |
| abstract_inverted_index.non-hub | 346 |
| abstract_inverted_index.numbers | 314 |
| abstract_inverted_index.protein | 72 |
| abstract_inverted_index.regions | 347 |
| abstract_inverted_index.s/mm2), | 247 |
| abstract_inverted_index.scanner | 264 |
| abstract_inverted_index.service | 593 |
| abstract_inverted_index.stated. | 618 |
| abstract_inverted_index.studies | 64, 185, 197 |
| abstract_inverted_index.subject | 568, 649 |
| abstract_inverted_index.through | 586 |
| abstract_inverted_index.weights | 322 |
| abstract_inverted_index.(APP/PS1 | 392 |
| abstract_inverted_index.(Bruker, | 265 |
| abstract_inverted_index.AD-model | 440 |
| abstract_inverted_index.Abstract | 1, 709, 711, 803 |
| abstract_inverted_index.Antwerp, | 41, 684 |
| abstract_inverted_index.Belgium, | 493, 687 |
| abstract_inverted_index.C57BL6/J | 226 |
| abstract_inverted_index.Congress | 485, 550 |
| abstract_inverted_index.Creative | 632 |
| abstract_inverted_index.Disease, | 467 |
| abstract_inverted_index.Georgios | 35, 732, 752, 773, 793 |
| abstract_inverted_index.However, | 195 |
| abstract_inverted_index.Imaging, | 474 |
| abstract_inverted_index.Keliris1 | 37 |
| abstract_inverted_index.Magnetic | 472 |
| abstract_inverted_index.Midbrain | 361 |
| abstract_inverted_index.Naeyaert | 521, 727, 747, 768, 788 |
| abstract_inverted_index.National | 484, 549 |
| abstract_inverted_index.Numerous | 63 |
| abstract_inverted_index.Pallium, | 358 |
| abstract_inverted_index.Required | 690 |
| abstract_inverted_index.Wilrijk, | 685 |
| abstract_inverted_index.abstract | 612 |
| abstract_inverted_index.acquired | 236 |
| abstract_inverted_index.allowing | 141 |
| abstract_inverted_index.analysis | 271 |
| abstract_inverted_index.approach | 160 |
| abstract_inverted_index.atrophy. | 62 |
| abstract_inverted_index.b-value, | 258 |
| abstract_inverted_index.b-values | 238 |
| abstract_inverted_index.cerebral | 61 |
| abstract_inverted_index.compared | 369 |
| abstract_inverted_index.deficits | 119 |
| abstract_inverted_index.disease. | 81 |
| abstract_inverted_index.diseases | 52 |
| abstract_inverted_index.elements | 75 |
| abstract_inverted_index.employer | 615 |
| abstract_inverted_index.endorsed | 579 |
| abstract_inverted_index.evidence | 13, 539 |
| abstract_inverted_index.gradient | 254 |
| abstract_inverted_index.identify | 162 |
| abstract_inverted_index.imaging. | 543 |
| abstract_inverted_index.magnetic | 134 |
| abstract_inverted_index.networks | 8, 388, 534 |
| abstract_inverted_index.patterns | 128, 372 |
| abstract_inverted_index.platform | 590 |
| abstract_inverted_index.previous | 366 |
| abstract_inverted_index.provided | 653 |
| abstract_inverted_index.provides | 157 |
| abstract_inverted_index.register | 704 |
| abstract_inverted_index.requires | 693 |
| abstract_inverted_index.settings | 817 |
| abstract_inverted_index.shortest | 406 |
| abstract_inverted_index.strength | 437 |
| abstract_inverted_index.subjects | 234 |
| abstract_inverted_index.template | 299 |
| abstract_inverted_index.topology | 481 |
| abstract_inverted_index.underlie | 125 |
| abstract_inverted_index.weighted | 133 |
| abstract_inverted_index.A12/0461, | 463 |
| abstract_inverted_index.A14/0554. | 464 |
| abstract_inverted_index.Abstract: | 547 |
| abstract_inverted_index.Alzheimer | 466 |
| abstract_inverted_index.Changhong | 18, 680, 716, 736, 757, 777 |
| abstract_inverted_index.Citation: | 510 |
| abstract_inverted_index.Comparing | 398 |
| abstract_inverted_index.Diffusion | 132, 267, 471 |
| abstract_inverted_index.Disorders | 505 |
| abstract_inverted_index.Frontiers | 571, 588, 657, 699, 715, 799 |
| abstract_inverted_index.G048917N, | 456 |
| abstract_inverted_index.G057615N, | 457 |
| abstract_inverted_index.Germany). | 266 |
| abstract_inverted_index.Keywords: | 465 |
| abstract_inverted_index.Neurosci. | 545 |
| abstract_inverted_index.Peeters1, | 23 |
| abstract_inverted_index.Published | 672 |
| abstract_inverted_index.Received: | 668 |
| abstract_inverted_index.Resonance | 473 |
| abstract_inverted_index.Verhoye1, | 27 |
| abstract_inverted_index.abstract, | 620 |
| abstract_inverted_index.abstracts | 561, 604 |
| abstract_inverted_index.addition, | 421 |
| abstract_inverted_index.analysis, | 470 |
| abstract_inverted_index.available | 585 |
| abstract_inverted_index.cingulate | 432 |
| abstract_inverted_index.cognitive | 55 |
| abstract_inverted_index.conducted | 273 |
| abstract_inverted_index.copyright | 600 |
| abstract_inverted_index.decreased | 415 |
| abstract_inverted_index.deficits, | 56 |
| abstract_inverted_index.different | 252 |
| abstract_inverted_index.diffusion | 16, 253, 542 |
| abstract_inverted_index.disabled. | 810 |
| abstract_inverted_index.estimated | 313 |
| abstract_inverted_index.including | 120, 171 |
| abstract_inverted_index.increased | 435 |
| abstract_inverted_index.logarithm | 310 |
| abstract_inverted_index.otherwise | 617 |
| abstract_inverted_index.patients. | 194 |
| abstract_inverted_index.published | 629 |
| abstract_inverted_index.reflected | 167 |
| abstract_inverted_index.research. | 96 |
| abstract_inverted_index.resonance | 135 |
| abstract_inverted_index.suggested | 65 |
| abstract_inverted_index.supported | 446 |
| abstract_inverted_index.technique | 140 |
| abstract_inverted_index.transgene | 105 |
| abstract_inverted_index.AD-related | 95 |
| abstract_inverted_index.Conference | 546 |
| abstract_inverted_index.Copyright: | 559 |
| abstract_inverted_index.Frontiers. | 581 |
| abstract_inverted_index.Hindbrain) | 363 |
| abstract_inverted_index.Javascript | 808, 813 |
| abstract_inverted_index.Naeyaert1, | 29 |
| abstract_inverted_index.Pharmascan | 262 |
| abstract_inverted_index.University | 39, 682 |
| abstract_inverted_index.abstracts, | 627 |
| abstract_inverted_index.anisotropy | 290 |
| abstract_inverted_index.approaches | 154 |
| abstract_inverted_index.clustering | 402 |
| abstract_inverted_index.collection | 564, 625 |
| abstract_inverted_index.comparison | 417 |
| abstract_inverted_index.conditions | 664 |
| abstract_inverted_index.conference | 595 |
| abstract_inverted_index.connection | 377 |
| abstract_inverted_index.derivative | 651 |
| abstract_inverted_index.directions | 255 |
| abstract_inverted_index.endogenous | 111 |
| abstract_inverted_index.expression | 101 |
| abstract_inverted_index.fractional | 289 |
| abstract_inverted_index.individual | 603 |
| abstract_inverted_index.literature | 367 |
| abstract_inverted_index.normalized | 405 |
| abstract_inverted_index.organizers | 596 |
| abstract_inverted_index.parameters | 170 |
| abstract_inverted_index.processing | 269 |
| abstract_inverted_index.properties | 166, 177, 191, 423 |
| abstract_inverted_index.publishing | 589 |
| abstract_inverted_index.registered | 697 |
| abstract_inverted_index.structural | 7, 387, 533 |
| abstract_inverted_index.subdivided | 340 |
| abstract_inverted_index.terminated | 283 |
| abstract_inverted_index.transgenic | 91, 219 |
| abstract_inverted_index.(Isocortex, | 357 |
| abstract_inverted_index.Application | 150 |
| abstract_inverted_index.Conference: | 482 |
| abstract_inverted_index.Scholarship | 450 |
| abstract_inverted_index.alterations | 123 |
| abstract_inverted_index.approaches. | 211 |
| abstract_inverted_index.attributed. | 659 |
| abstract_inverted_index.attributes, | 173 |
| abstract_inverted_index.coefficient | 403 |
| abstract_inverted_index.constructed | 330 |
| abstract_inverted_index.development | 78 |
| abstract_inverted_index.differences | 204 |
| abstract_inverted_index.multi-shell | 15, 541 |
| abstract_inverted_index.presenters. | 598 |
| abstract_inverted_index.properties. | 397 |
| abstract_inverted_index.reproduced, | 643 |
| abstract_inverted_index.small-world | 172, 396 |
| abstract_inverted_index.streamlines | 316 |
| abstract_inverted_index.theoretical | 153, 469 |
| abstract_inverted_index.therapeutic | 210 |
| abstract_inverted_index.translated, | 644 |
| abstract_inverted_index.Frontiers’ | 661 |
| abstract_inverted_index.Presentation | 500, 503 |
| abstract_inverted_index.Sub-pallium, | 359 |
| abstract_inverted_index.connections. | 325 |
| abstract_inverted_index.connectivity | 127, 371 |
| abstract_inverted_index.demonstrated | 187, 395, 434 |
| abstract_inverted_index.tractography | 281 |
| abstract_inverted_index.(attribution) | 636 |
| abstract_inverted_index.Alzheimer’s | 43 |
| abstract_inverted_index.Diencephalon, | 360 |
| abstract_inverted_index.Neuroscience, | 491 |
| abstract_inverted_index.Neuroscience. | 556 |
| abstract_inverted_index.characterized | 53 |
| abstract_inverted_index.investigation | 143 |
| abstract_inverted_index.organization, | 478 |
| abstract_inverted_index.organization. | 181 |
| abstract_inverted_index.significantly | 414 |
| abstract_inverted_index.somatosensory | 430 |
| abstract_inverted_index.Correspondence: | 678 |
| abstract_inverted_index.Acknowledgements | 442 |
| abstract_inverted_index.microstructures. | 149 |
| abstract_inverted_index.neurodegenerative | 51 |
| [email protected] | 688 |
| abstract_inverted_index.10.3389/conf.fnins.2017.94.00023 | 558 |
| abstract_inverted_index.(https://creativecommons.org/licenses/by/4.0/) | 638 |
| abstract_inverted_index.https://www.frontiersin.org/legal/terms-and-conditions. | 667 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.31376692 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |