Ambient Noise Full Waveform Inversion with Neural Operators Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2503.15013
Numerical simulations of seismic wave propagation are crucial for investigating velocity structures and improving seismic hazard assessment. However, standard methods such as finite difference or finite element are computationally expensive. Recent studies have shown that a new class of machine learning models, called neural operators, can solve the elastodynamic wave equation orders of magnitude faster than conventional methods. Full waveform inversion is a prime beneficiary of the accelerated simulations. Neural operators, as end-to-end differentiable operators, combined with automatic differentiation, provide an alternative approach to the adjoint-state method. State-of-the-art optimization techniques built into PyTorch provide neural operators with greater flexibility to improve the optimization dynamics of full waveform inversion, thereby mitigating cycle-skipping problems. In this study, we demonstrate the first application of neural operators for full waveform inversion on a real seismic dataset, which consists of several nodal transects collected across the San Gabriel, Chino, and San Bernardino basins in the Los Angeles metropolitan area.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2503.15013
- https://arxiv.org/pdf/2503.15013
- OA Status
- green
- Cited By
- 1
- OpenAlex ID
- https://openalex.org/W4414902575
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414902575Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2503.15013Digital Object Identifier
- Title
-
Ambient Noise Full Waveform Inversion with Neural OperatorsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-19Full publication date if available
- Authors
-
Caifeng Zou, Zachary E. Ross, Robert W. Clayton, Fan‐Chi Lin, Kamyar AzizzadenesheliList of authors in order
- Landing page
-
https://arxiv.org/abs/2503.15013Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2503.15013Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2503.15013Direct OA link when available
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
Full payload
| id | https://openalex.org/W4414902575 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2503.15013 |
| ids.doi | https://doi.org/10.48550/arxiv.2503.15013 |
| ids.openalex | https://openalex.org/W4414902575 |
| fwci | |
| type | preprint |
| title | Ambient Noise Full Waveform Inversion with Neural Operators |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10271 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9908000230789185 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1908 |
| topics[0].subfield.display_name | Geophysics |
| topics[0].display_name | Seismic Imaging and Inversion Techniques |
| topics[1].id | https://openalex.org/T10688 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9902999997138977 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image and Signal Denoising Methods |
| topics[2].id | https://openalex.org/T11698 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9894999861717224 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1910 |
| topics[2].subfield.display_name | Oceanography |
| topics[2].display_name | Underwater Acoustics Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2503.15013 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2503.15013 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2503.15013 |
| locations[1].id | doi:10.48550/arxiv.2503.15013 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2503.15013 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5022648809 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9445-7594 |
| authorships[0].author.display_name | Caifeng Zou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zou, Caifeng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5006827123 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6343-8400 |
| authorships[1].author.display_name | Zachary E. Ross |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ross, Zachary E. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5085830112 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3323-3508 |
| authorships[2].author.display_name | Robert W. Clayton |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Clayton, Robert W. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5029033878 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0394-6830 |
| authorships[3].author.display_name | Fan‐Chi Lin |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lin, Fan-Chi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5038884528 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8507-1868 |
| authorships[4].author.display_name | Kamyar Azizzadenesheli |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Azizzadenesheli, Kamyar |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2503.15013 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Ambient Noise Full Waveform Inversion with Neural Operators |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10271 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9908000230789185 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1908 |
| primary_topic.subfield.display_name | Geophysics |
| primary_topic.display_name | Seismic Imaging and Inversion Techniques |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2503.15013 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2503.15013 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2503.15013 |
| primary_location.id | pmh:oai:arXiv.org:2503.15013 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2503.15013 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2503.15013 |
| publication_date | 2025-03-19 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 35, 62, 128 |
| abstract_inverted_index.In | 112 |
| abstract_inverted_index.an | 80 |
| abstract_inverted_index.as | 21, 71 |
| abstract_inverted_index.in | 148 |
| abstract_inverted_index.is | 61 |
| abstract_inverted_index.of | 2, 38, 52, 65, 104, 120, 134 |
| abstract_inverted_index.on | 127 |
| abstract_inverted_index.or | 24 |
| abstract_inverted_index.to | 83, 99 |
| abstract_inverted_index.we | 115 |
| abstract_inverted_index.Los | 150 |
| abstract_inverted_index.San | 141, 145 |
| abstract_inverted_index.and | 12, 144 |
| abstract_inverted_index.are | 6, 27 |
| abstract_inverted_index.can | 45 |
| abstract_inverted_index.for | 8, 123 |
| abstract_inverted_index.new | 36 |
| abstract_inverted_index.the | 47, 66, 84, 101, 117, 140, 149 |
| abstract_inverted_index.Full | 58 |
| abstract_inverted_index.full | 105, 124 |
| abstract_inverted_index.have | 32 |
| abstract_inverted_index.into | 91 |
| abstract_inverted_index.real | 129 |
| abstract_inverted_index.such | 20 |
| abstract_inverted_index.than | 55 |
| abstract_inverted_index.that | 34 |
| abstract_inverted_index.this | 113 |
| abstract_inverted_index.wave | 4, 49 |
| abstract_inverted_index.with | 76, 96 |
| abstract_inverted_index.area. | 153 |
| abstract_inverted_index.built | 90 |
| abstract_inverted_index.class | 37 |
| abstract_inverted_index.first | 118 |
| abstract_inverted_index.nodal | 136 |
| abstract_inverted_index.prime | 63 |
| abstract_inverted_index.shown | 33 |
| abstract_inverted_index.solve | 46 |
| abstract_inverted_index.which | 132 |
| abstract_inverted_index.Chino, | 143 |
| abstract_inverted_index.Neural | 69 |
| abstract_inverted_index.Recent | 30 |
| abstract_inverted_index.across | 139 |
| abstract_inverted_index.basins | 147 |
| abstract_inverted_index.called | 42 |
| abstract_inverted_index.faster | 54 |
| abstract_inverted_index.finite | 22, 25 |
| abstract_inverted_index.hazard | 15 |
| abstract_inverted_index.neural | 43, 94, 121 |
| abstract_inverted_index.orders | 51 |
| abstract_inverted_index.study, | 114 |
| abstract_inverted_index.Angeles | 151 |
| abstract_inverted_index.PyTorch | 92 |
| abstract_inverted_index.crucial | 7 |
| abstract_inverted_index.element | 26 |
| abstract_inverted_index.greater | 97 |
| abstract_inverted_index.improve | 100 |
| abstract_inverted_index.machine | 39 |
| abstract_inverted_index.method. | 86 |
| abstract_inverted_index.methods | 19 |
| abstract_inverted_index.models, | 41 |
| abstract_inverted_index.provide | 79, 93 |
| abstract_inverted_index.seismic | 3, 14, 130 |
| abstract_inverted_index.several | 135 |
| abstract_inverted_index.studies | 31 |
| abstract_inverted_index.thereby | 108 |
| abstract_inverted_index.Gabriel, | 142 |
| abstract_inverted_index.However, | 17 |
| abstract_inverted_index.approach | 82 |
| abstract_inverted_index.combined | 75 |
| abstract_inverted_index.consists | 133 |
| abstract_inverted_index.dataset, | 131 |
| abstract_inverted_index.dynamics | 103 |
| abstract_inverted_index.equation | 50 |
| abstract_inverted_index.learning | 40 |
| abstract_inverted_index.methods. | 57 |
| abstract_inverted_index.standard | 18 |
| abstract_inverted_index.velocity | 10 |
| abstract_inverted_index.waveform | 59, 106, 125 |
| abstract_inverted_index.Numerical | 0 |
| abstract_inverted_index.automatic | 77 |
| abstract_inverted_index.collected | 138 |
| abstract_inverted_index.improving | 13 |
| abstract_inverted_index.inversion | 60, 126 |
| abstract_inverted_index.magnitude | 53 |
| abstract_inverted_index.operators | 95, 122 |
| abstract_inverted_index.problems. | 111 |
| abstract_inverted_index.transects | 137 |
| abstract_inverted_index.Bernardino | 146 |
| abstract_inverted_index.difference | 23 |
| abstract_inverted_index.end-to-end | 72 |
| abstract_inverted_index.expensive. | 29 |
| abstract_inverted_index.inversion, | 107 |
| abstract_inverted_index.mitigating | 109 |
| abstract_inverted_index.operators, | 44, 70, 74 |
| abstract_inverted_index.structures | 11 |
| abstract_inverted_index.techniques | 89 |
| abstract_inverted_index.accelerated | 67 |
| abstract_inverted_index.alternative | 81 |
| abstract_inverted_index.application | 119 |
| abstract_inverted_index.assessment. | 16 |
| abstract_inverted_index.beneficiary | 64 |
| abstract_inverted_index.demonstrate | 116 |
| abstract_inverted_index.flexibility | 98 |
| abstract_inverted_index.propagation | 5 |
| abstract_inverted_index.simulations | 1 |
| abstract_inverted_index.conventional | 56 |
| abstract_inverted_index.metropolitan | 152 |
| abstract_inverted_index.optimization | 88, 102 |
| abstract_inverted_index.simulations. | 68 |
| abstract_inverted_index.adjoint-state | 85 |
| abstract_inverted_index.elastodynamic | 48 |
| abstract_inverted_index.investigating | 9 |
| abstract_inverted_index.cycle-skipping | 110 |
| abstract_inverted_index.differentiable | 73 |
| abstract_inverted_index.computationally | 28 |
| abstract_inverted_index.State-of-the-art | 87 |
| abstract_inverted_index.differentiation, | 78 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |