AmnioML: Amniotic Fluid Segmentation and Volume Prediction with Uncertainty Quantification Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1609/aaai.v37i13.26837
Accurately predicting the volume of amniotic fluid is fundamental to assessing pregnancy risks, though the task usually requires many hours of laborious work by medical experts. In this paper, we present AmnioML, a machine learning solution that leverages deep learning and conformal prediction to output fast and accurate volume estimates and segmentation masks from fetal MRIs with Dice coefficient over 0.9. Also, we make available a novel, curated dataset for fetal MRIs with 853 exams and benchmark the performance of many recent deep learning architectures. In addition, we introduce a conformal prediction tool that yields narrow predictive intervals with theoretically guaranteed coverage, thus aiding doctors in detecting pregnancy risks and saving lives. A successful case study of AmnioML deployed in a medical setting is also reported. Real-world clinical benefits include up to 20x segmentation time reduction, with most segmentations deemed by doctors as not needing any further manual refinement. Furthermore, AmnioML's volume predictions were found to be highly accurate in practice, with mean absolute error below 56mL and tight predictive intervals, showcasing its impact in reducing pregnancy complications.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1609/aaai.v37i13.26837
- https://ojs.aaai.org/index.php/AAAI/article/download/26837/26609
- OA Status
- diamond
- Cited By
- 7
- References
- 48
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4382318443
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4382318443Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1609/aaai.v37i13.26837Digital Object Identifier
- Title
-
AmnioML: Amniotic Fluid Segmentation and Volume Prediction with Uncertainty QuantificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-26Full publication date if available
- Authors
-
Daniel Csillag, Lucas Monteiro Paes, Thiago Ramos, João Vitor Romano, R. B. Schüller, Roberto B. Seixas, Roberto I. Oliveira, Paulo OrensteinList of authors in order
- Landing page
-
https://doi.org/10.1609/aaai.v37i13.26837Publisher landing page
- PDF URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/26837/26609Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/26837/26609Direct OA link when available
- Concepts
-
Segmentation, Benchmark (surveying), Computer science, Deep learning, Artificial intelligence, Volume (thermodynamics), Task (project management), Machine learning, Sørensen–Dice coefficient, Image segmentation, Management, Geography, Economics, Geodesy, Quantum mechanics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 2, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
48Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4382318443 |
|---|---|
| doi | https://doi.org/10.1609/aaai.v37i13.26837 |
| ids.doi | https://doi.org/10.1609/aaai.v37i13.26837 |
| ids.openalex | https://openalex.org/W4382318443 |
| fwci | 14.0 |
| type | article |
| title | AmnioML: Amniotic Fluid Segmentation and Volume Prediction with Uncertainty Quantification |
| biblio.issue | 13 |
| biblio.volume | 37 |
| biblio.last_page | 15502 |
| biblio.first_page | 15494 |
| topics[0].id | https://openalex.org/T10290 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9883000254631042 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2729 |
| topics[0].subfield.display_name | Obstetrics and Gynecology |
| topics[0].display_name | Pregnancy and preeclampsia studies |
| topics[1].id | https://openalex.org/T11184 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.984499990940094 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2735 |
| topics[1].subfield.display_name | Pediatrics, Perinatology and Child Health |
| topics[1].display_name | Neonatal and fetal brain pathology |
| topics[2].id | https://openalex.org/T12552 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9829000234603882 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2735 |
| topics[2].subfield.display_name | Pediatrics, Perinatology and Child Health |
| topics[2].display_name | Fetal and Pediatric Neurological Disorders |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7809202075004578 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C185798385 |
| concepts[1].level | 2 |
| concepts[1].score | 0.735253632068634 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[1].display_name | Benchmark (surveying) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7084675431251526 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C108583219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6564229726791382 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep learning |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6101338863372803 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C20556612 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6039824485778809 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4469374 |
| concepts[5].display_name | Volume (thermodynamics) |
| concepts[6].id | https://openalex.org/C2780451532 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5724684000015259 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[6].display_name | Task (project management) |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5306118130683899 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C163892561 |
| concepts[8].level | 4 |
| concepts[8].score | 0.513864278793335 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2613728 |
| concepts[8].display_name | Sørensen–Dice coefficient |
| concepts[9].id | https://openalex.org/C124504099 |
| concepts[9].level | 3 |
| concepts[9].score | 0.2778262794017792 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[9].display_name | Image segmentation |
| concepts[10].id | https://openalex.org/C187736073 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[10].display_name | Management |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C162324750 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[12].display_name | Economics |
| concepts[13].id | https://openalex.org/C13280743 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[13].display_name | Geodesy |
| concepts[14].id | https://openalex.org/C62520636 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[14].display_name | Quantum mechanics |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.7809202075004578 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/benchmark |
| keywords[1].score | 0.735253632068634 |
| keywords[1].display_name | Benchmark (surveying) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7084675431251526 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/deep-learning |
| keywords[3].score | 0.6564229726791382 |
| keywords[3].display_name | Deep learning |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6101338863372803 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/volume |
| keywords[5].score | 0.6039824485778809 |
| keywords[5].display_name | Volume (thermodynamics) |
| keywords[6].id | https://openalex.org/keywords/task |
| keywords[6].score | 0.5724684000015259 |
| keywords[6].display_name | Task (project management) |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.5306118130683899 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/sørensen–dice-coefficient |
| keywords[8].score | 0.513864278793335 |
| keywords[8].display_name | Sørensen–Dice coefficient |
| keywords[9].id | https://openalex.org/keywords/image-segmentation |
| keywords[9].score | 0.2778262794017792 |
| keywords[9].display_name | Image segmentation |
| language | en |
| locations[0].id | doi:10.1609/aaai.v37i13.26837 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191458 |
| locations[0].source.issn | 2159-5399, 2374-3468 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2159-5399 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| locations[0].license | |
| locations[0].pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/26837/26609 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1609/aaai.v37i13.26837 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5092346199 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Daniel Csillag |
| authorships[0].countries | BR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I141883831 |
| authorships[0].affiliations[0].raw_affiliation_string | IMPA, Rio de Janeiro, Brazil |
| authorships[0].institutions[0].id | https://openalex.org/I141883831 |
| authorships[0].institutions[0].ror | https://ror.org/028caqe42 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I141883831, https://openalex.org/I4210151455 |
| authorships[0].institutions[0].country_code | BR |
| authorships[0].institutions[0].display_name | Instituto Nacional de Matemática Pura e Aplicada |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Daniel Csillag |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | IMPA, Rio de Janeiro, Brazil |
| authorships[1].author.id | https://openalex.org/A5092145397 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0129-1420 |
| authorships[1].author.display_name | Lucas Monteiro Paes |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2801851002 |
| authorships[1].affiliations[0].raw_affiliation_string | Harvard University |
| authorships[1].institutions[0].id | https://openalex.org/I2801851002 |
| authorships[1].institutions[0].ror | https://ror.org/006v7bf86 |
| authorships[1].institutions[0].type | other |
| authorships[1].institutions[0].lineage | https://openalex.org/I136199984, https://openalex.org/I2801851002 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Harvard University Press |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lucas Monteiro Paes |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Harvard University |
| authorships[2].author.id | https://openalex.org/A5062392043 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6271-7099 |
| authorships[2].author.display_name | Thiago Ramos |
| authorships[2].countries | BR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I141883831 |
| authorships[2].affiliations[0].raw_affiliation_string | IMPA, Rio de Janeiro, Brazil |
| authorships[2].institutions[0].id | https://openalex.org/I141883831 |
| authorships[2].institutions[0].ror | https://ror.org/028caqe42 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I141883831, https://openalex.org/I4210151455 |
| authorships[2].institutions[0].country_code | BR |
| authorships[2].institutions[0].display_name | Instituto Nacional de Matemática Pura e Aplicada |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Thiago Ramos |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | IMPA, Rio de Janeiro, Brazil |
| authorships[3].author.id | https://openalex.org/A5071749805 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | João Vitor Romano |
| authorships[3].countries | BR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I141883831 |
| authorships[3].affiliations[0].raw_affiliation_string | IMPA, Rio de Janeiro, Brazil |
| authorships[3].institutions[0].id | https://openalex.org/I141883831 |
| authorships[3].institutions[0].ror | https://ror.org/028caqe42 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I141883831, https://openalex.org/I4210151455 |
| authorships[3].institutions[0].country_code | BR |
| authorships[3].institutions[0].display_name | Instituto Nacional de Matemática Pura e Aplicada |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | João Vitor Romano |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | IMPA, Rio de Janeiro, Brazil |
| authorships[4].author.id | https://openalex.org/A5111405915 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | R. B. Schüller |
| authorships[4].countries | BR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I141883831 |
| authorships[4].affiliations[0].raw_affiliation_string | IMPA, Rio de Janeiro, Brazil |
| authorships[4].institutions[0].id | https://openalex.org/I141883831 |
| authorships[4].institutions[0].ror | https://ror.org/028caqe42 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I141883831, https://openalex.org/I4210151455 |
| authorships[4].institutions[0].country_code | BR |
| authorships[4].institutions[0].display_name | Instituto Nacional de Matemática Pura e Aplicada |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Rodrigo Schuller |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | IMPA, Rio de Janeiro, Brazil |
| authorships[5].author.id | https://openalex.org/A5030612166 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Roberto B. Seixas |
| authorships[5].countries | BR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I141883831 |
| authorships[5].affiliations[0].raw_affiliation_string | IMPA, Rio de Janeiro, Brazil |
| authorships[5].institutions[0].id | https://openalex.org/I141883831 |
| authorships[5].institutions[0].ror | https://ror.org/028caqe42 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I141883831, https://openalex.org/I4210151455 |
| authorships[5].institutions[0].country_code | BR |
| authorships[5].institutions[0].display_name | Instituto Nacional de Matemática Pura e Aplicada |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Roberto B. Seixas |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | IMPA, Rio de Janeiro, Brazil |
| authorships[6].author.id | https://openalex.org/A5080155657 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1064-3398 |
| authorships[6].author.display_name | Roberto I. Oliveira |
| authorships[6].countries | BR |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I141883831 |
| authorships[6].affiliations[0].raw_affiliation_string | IMPA, Rio de Janeiro, Brazil |
| authorships[6].institutions[0].id | https://openalex.org/I141883831 |
| authorships[6].institutions[0].ror | https://ror.org/028caqe42 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I141883831, https://openalex.org/I4210151455 |
| authorships[6].institutions[0].country_code | BR |
| authorships[6].institutions[0].display_name | Instituto Nacional de Matemática Pura e Aplicada |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Roberto I. Oliveira |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | IMPA, Rio de Janeiro, Brazil |
| authorships[7].author.id | https://openalex.org/A5034687178 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-0907-704X |
| authorships[7].author.display_name | Paulo Orenstein |
| authorships[7].countries | BR |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I141883831 |
| authorships[7].affiliations[0].raw_affiliation_string | IMPA, Rio de Janeiro, Brazil |
| authorships[7].institutions[0].id | https://openalex.org/I141883831 |
| authorships[7].institutions[0].ror | https://ror.org/028caqe42 |
| authorships[7].institutions[0].type | facility |
| authorships[7].institutions[0].lineage | https://openalex.org/I141883831, https://openalex.org/I4210151455 |
| authorships[7].institutions[0].country_code | BR |
| authorships[7].institutions[0].display_name | Instituto Nacional de Matemática Pura e Aplicada |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Paulo Orenstein |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | IMPA, Rio de Janeiro, Brazil |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.aaai.org/index.php/AAAI/article/download/26837/26609 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | AmnioML: Amniotic Fluid Segmentation and Volume Prediction with Uncertainty Quantification |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10290 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9883000254631042 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2729 |
| primary_topic.subfield.display_name | Obstetrics and Gynecology |
| primary_topic.display_name | Pregnancy and preeclampsia studies |
| related_works | https://openalex.org/W4385633891, https://openalex.org/W3197954266, https://openalex.org/W2036390026, https://openalex.org/W4389009345, https://openalex.org/W4287691568, https://openalex.org/W3047746737, https://openalex.org/W3021454079, https://openalex.org/W4310202196, https://openalex.org/W4220718606, https://openalex.org/W2085143385 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1609/aaai.v37i13.26837 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191458 |
| best_oa_location.source.issn | 2159-5399, 2374-3468 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2159-5399 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/26837/26609 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1609/aaai.v37i13.26837 |
| primary_location.id | doi:10.1609/aaai.v37i13.26837 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191458 |
| primary_location.source.issn | 2159-5399, 2374-3468 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2159-5399 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| primary_location.license | |
| primary_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/26837/26609 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1609/aaai.v37i13.26837 |
| publication_date | 2023-06-26 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3135762269, https://openalex.org/W3123175861, https://openalex.org/W1974971059, https://openalex.org/W2007214387, https://openalex.org/W3118640283, https://openalex.org/W6817164276, https://openalex.org/W188819536, https://openalex.org/W2412782625, https://openalex.org/W2787091153, https://openalex.org/W3027793520, https://openalex.org/W2947436701, https://openalex.org/W2026616100, https://openalex.org/W6842783040, https://openalex.org/W2951350821, https://openalex.org/W2033575323, https://openalex.org/W3046999841, https://openalex.org/W2340356402, https://openalex.org/W2565516711, https://openalex.org/W3123759929, https://openalex.org/W1979802582, https://openalex.org/W6643044561, https://openalex.org/W2732707657, https://openalex.org/W1499689786, https://openalex.org/W6760613829, https://openalex.org/W6663793488, https://openalex.org/W6630693315, https://openalex.org/W1901129140, https://openalex.org/W6685112792, https://openalex.org/W3011248632, https://openalex.org/W4210705802, https://openalex.org/W6633078319, https://openalex.org/W6730342312, https://openalex.org/W2994754739, https://openalex.org/W4206734100, https://openalex.org/W2052636623, https://openalex.org/W3081410614, https://openalex.org/W1511261167, https://openalex.org/W2560023338, https://openalex.org/W4295355003, https://openalex.org/W2171585602, https://openalex.org/W4312294904, https://openalex.org/W3204656437, https://openalex.org/W2996290406, https://openalex.org/W1971745316, https://openalex.org/W2980089822, https://openalex.org/W2964309882, https://openalex.org/W2921526792, https://openalex.org/W2964060211 |
| referenced_works_count | 48 |
| abstract_inverted_index.A | 112 |
| abstract_inverted_index.a | 32, 65, 89, 120 |
| abstract_inverted_index.In | 26, 85 |
| abstract_inverted_index.as | 142 |
| abstract_inverted_index.be | 156 |
| abstract_inverted_index.by | 23, 140 |
| abstract_inverted_index.in | 105, 119, 159, 174 |
| abstract_inverted_index.is | 7, 123 |
| abstract_inverted_index.of | 4, 20, 79, 116 |
| abstract_inverted_index.to | 9, 43, 131, 155 |
| abstract_inverted_index.up | 130 |
| abstract_inverted_index.we | 29, 62, 87 |
| abstract_inverted_index.20x | 132 |
| abstract_inverted_index.853 | 73 |
| abstract_inverted_index.and | 40, 46, 50, 75, 109, 167 |
| abstract_inverted_index.any | 145 |
| abstract_inverted_index.for | 69 |
| abstract_inverted_index.its | 172 |
| abstract_inverted_index.not | 143 |
| abstract_inverted_index.the | 2, 14, 77 |
| abstract_inverted_index.0.9. | 60 |
| abstract_inverted_index.56mL | 166 |
| abstract_inverted_index.Dice | 57 |
| abstract_inverted_index.MRIs | 55, 71 |
| abstract_inverted_index.also | 124 |
| abstract_inverted_index.case | 114 |
| abstract_inverted_index.deep | 38, 82 |
| abstract_inverted_index.fast | 45 |
| abstract_inverted_index.from | 53 |
| abstract_inverted_index.make | 63 |
| abstract_inverted_index.many | 18, 80 |
| abstract_inverted_index.mean | 162 |
| abstract_inverted_index.most | 137 |
| abstract_inverted_index.over | 59 |
| abstract_inverted_index.task | 15 |
| abstract_inverted_index.that | 36, 93 |
| abstract_inverted_index.this | 27 |
| abstract_inverted_index.thus | 102 |
| abstract_inverted_index.time | 134 |
| abstract_inverted_index.tool | 92 |
| abstract_inverted_index.were | 153 |
| abstract_inverted_index.with | 56, 72, 98, 136, 161 |
| abstract_inverted_index.work | 22 |
| abstract_inverted_index.Also, | 61 |
| abstract_inverted_index.below | 165 |
| abstract_inverted_index.error | 164 |
| abstract_inverted_index.exams | 74 |
| abstract_inverted_index.fetal | 54, 70 |
| abstract_inverted_index.fluid | 6 |
| abstract_inverted_index.found | 154 |
| abstract_inverted_index.hours | 19 |
| abstract_inverted_index.masks | 52 |
| abstract_inverted_index.risks | 108 |
| abstract_inverted_index.study | 115 |
| abstract_inverted_index.tight | 168 |
| abstract_inverted_index.aiding | 103 |
| abstract_inverted_index.deemed | 139 |
| abstract_inverted_index.highly | 157 |
| abstract_inverted_index.impact | 173 |
| abstract_inverted_index.lives. | 111 |
| abstract_inverted_index.manual | 147 |
| abstract_inverted_index.narrow | 95 |
| abstract_inverted_index.novel, | 66 |
| abstract_inverted_index.output | 44 |
| abstract_inverted_index.paper, | 28 |
| abstract_inverted_index.recent | 81 |
| abstract_inverted_index.risks, | 12 |
| abstract_inverted_index.saving | 110 |
| abstract_inverted_index.though | 13 |
| abstract_inverted_index.volume | 3, 48, 151 |
| abstract_inverted_index.yields | 94 |
| abstract_inverted_index.AmnioML | 117 |
| abstract_inverted_index.curated | 67 |
| abstract_inverted_index.dataset | 68 |
| abstract_inverted_index.doctors | 104, 141 |
| abstract_inverted_index.further | 146 |
| abstract_inverted_index.include | 129 |
| abstract_inverted_index.machine | 33 |
| abstract_inverted_index.medical | 24, 121 |
| abstract_inverted_index.needing | 144 |
| abstract_inverted_index.present | 30 |
| abstract_inverted_index.setting | 122 |
| abstract_inverted_index.usually | 16 |
| abstract_inverted_index.AmnioML, | 31 |
| abstract_inverted_index.absolute | 163 |
| abstract_inverted_index.accurate | 47, 158 |
| abstract_inverted_index.amniotic | 5 |
| abstract_inverted_index.benefits | 128 |
| abstract_inverted_index.clinical | 127 |
| abstract_inverted_index.deployed | 118 |
| abstract_inverted_index.experts. | 25 |
| abstract_inverted_index.learning | 34, 39, 83 |
| abstract_inverted_index.reducing | 175 |
| abstract_inverted_index.requires | 17 |
| abstract_inverted_index.solution | 35 |
| abstract_inverted_index.AmnioML's | 150 |
| abstract_inverted_index.addition, | 86 |
| abstract_inverted_index.assessing | 10 |
| abstract_inverted_index.available | 64 |
| abstract_inverted_index.benchmark | 76 |
| abstract_inverted_index.conformal | 41, 90 |
| abstract_inverted_index.coverage, | 101 |
| abstract_inverted_index.detecting | 106 |
| abstract_inverted_index.estimates | 49 |
| abstract_inverted_index.intervals | 97 |
| abstract_inverted_index.introduce | 88 |
| abstract_inverted_index.laborious | 21 |
| abstract_inverted_index.leverages | 37 |
| abstract_inverted_index.practice, | 160 |
| abstract_inverted_index.pregnancy | 11, 107, 176 |
| abstract_inverted_index.reported. | 125 |
| abstract_inverted_index.Accurately | 0 |
| abstract_inverted_index.Real-world | 126 |
| abstract_inverted_index.guaranteed | 100 |
| abstract_inverted_index.intervals, | 170 |
| abstract_inverted_index.predicting | 1 |
| abstract_inverted_index.prediction | 42, 91 |
| abstract_inverted_index.predictive | 96, 169 |
| abstract_inverted_index.reduction, | 135 |
| abstract_inverted_index.showcasing | 171 |
| abstract_inverted_index.successful | 113 |
| abstract_inverted_index.coefficient | 58 |
| abstract_inverted_index.fundamental | 8 |
| abstract_inverted_index.performance | 78 |
| abstract_inverted_index.predictions | 152 |
| abstract_inverted_index.refinement. | 148 |
| abstract_inverted_index.Furthermore, | 149 |
| abstract_inverted_index.segmentation | 51, 133 |
| abstract_inverted_index.segmentations | 138 |
| abstract_inverted_index.theoretically | 99 |
| abstract_inverted_index.architectures. | 84 |
| abstract_inverted_index.complications. | 177 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.6600000262260437 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 1.0 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |