An abnormal traffic detection method in smart substations based on coupling field extraction and DBSCAN Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1051/e3sconf/202126002005
Smart Substation becomes more vulnerable to cyber attacks due to the high integration of information technologies, so it is essential to detect intrusion behaviour by abnormal traffic analysis in smart substations. Although there have been many detection methods for abnormal traffic, the existing ones all focus on the format check of a single field of the industrial transmission protocol, and ignore the deep coupling relationships among multiple protocol fields, which lead to more or less false detections and missed detections. To overcome this problem and further improve the detection accuracy, in this paper, we propose an abnormal traffic detection method based on the coupling field extraction and the density-based spatial clustering of applications with noise (DBSCAN). By using correlation analysis to extract the coupling fields of the protocol fields and using DBSCAN to remove the noise in the coupling fields, the deep coupling relationship between the coupling fields can be mined by the piecewise linear function fitting method, and used to detect abnormal traffic. The simulation results on 10,000 frames traffic prove that the proposed detection method can effectively identify the abnormal traffic.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1051/e3sconf/202126002005
- https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/36/e3sconf_aepee2021_02005.pdf
- OA Status
- diamond
- Cited By
- 2
- References
- 15
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3163834216
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3163834216Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1051/e3sconf/202126002005Digital Object Identifier
- Title
-
An abnormal traffic detection method in smart substations based on coupling field extraction and DBSCANWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Jianwei Tian, Zongchao Yu, Li Liu, Weidong Wu, Hongyu Zhu, Xuan LiuList of authors in order
- Landing page
-
https://doi.org/10.1051/e3sconf/202126002005Publisher landing page
- PDF URL
-
https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/36/e3sconf_aepee2021_02005.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/36/e3sconf_aepee2021_02005.pdfDirect OA link when available
- Concepts
-
DBSCAN, Computer science, Noise (video), Field (mathematics), Coupling (piping), Data mining, Cluster analysis, Anomaly detection, Intrusion detection system, Protocol (science), Piecewise, Pattern recognition (psychology), Artificial intelligence, Real-time computing, Engineering, Mathematics, Image (mathematics), Fuzzy clustering, Mathematical analysis, Alternative medicine, Medicine, Mechanical engineering, Canopy clustering algorithm, Pathology, Pure mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
15Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3163834216 |
|---|---|
| doi | https://doi.org/10.1051/e3sconf/202126002005 |
| ids.doi | https://doi.org/10.1051/e3sconf/202126002005 |
| ids.mag | 3163834216 |
| ids.openalex | https://openalex.org/W3163834216 |
| fwci | 0.13283291 |
| type | article |
| title | An abnormal traffic detection method in smart substations based on coupling field extraction and DBSCAN |
| biblio.issue | |
| biblio.volume | 260 |
| biblio.last_page | 02005 |
| biblio.first_page | 02005 |
| topics[0].id | https://openalex.org/T10917 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Smart Grid Security and Resilience |
| topics[1].id | https://openalex.org/T10400 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9994999766349792 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Network Security and Intrusion Detection |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9987000226974487 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C46576248 |
| concepts[0].level | 5 |
| concepts[0].score | 0.8217143416404724 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1114630 |
| concepts[0].display_name | DBSCAN |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6855639219284058 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C99498987 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5513508319854736 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[2].display_name | Noise (video) |
| concepts[3].id | https://openalex.org/C9652623 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5327674746513367 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[3].display_name | Field (mathematics) |
| concepts[4].id | https://openalex.org/C131584629 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5230944156646729 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4308705 |
| concepts[4].display_name | Coupling (piping) |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5061227679252625 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C73555534 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5036758780479431 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[6].display_name | Cluster analysis |
| concepts[7].id | https://openalex.org/C739882 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4499708414077759 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[7].display_name | Anomaly detection |
| concepts[8].id | https://openalex.org/C35525427 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4136536419391632 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q745881 |
| concepts[8].display_name | Intrusion detection system |
| concepts[9].id | https://openalex.org/C2780385302 |
| concepts[9].level | 3 |
| concepts[9].score | 0.41294345259666443 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q367158 |
| concepts[9].display_name | Protocol (science) |
| concepts[10].id | https://openalex.org/C164660894 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4110875725746155 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2037833 |
| concepts[10].display_name | Piecewise |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3994705080986023 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.35957232117652893 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C79403827 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3284072279930115 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[13].display_name | Real-time computing |
| concepts[14].id | https://openalex.org/C127413603 |
| concepts[14].level | 0 |
| concepts[14].score | 0.15421968698501587 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[14].display_name | Engineering |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.13253843784332275 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C115961682 |
| concepts[16].level | 2 |
| concepts[16].score | 0.11846661567687988 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[16].display_name | Image (mathematics) |
| concepts[17].id | https://openalex.org/C17212007 |
| concepts[17].level | 3 |
| concepts[17].score | 0.09593114256858826 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5511111 |
| concepts[17].display_name | Fuzzy clustering |
| concepts[18].id | https://openalex.org/C134306372 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[18].display_name | Mathematical analysis |
| concepts[19].id | https://openalex.org/C204787440 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q188504 |
| concepts[19].display_name | Alternative medicine |
| concepts[20].id | https://openalex.org/C71924100 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[20].display_name | Medicine |
| concepts[21].id | https://openalex.org/C78519656 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[21].display_name | Mechanical engineering |
| concepts[22].id | https://openalex.org/C104047586 |
| concepts[22].level | 4 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q5033439 |
| concepts[22].display_name | Canopy clustering algorithm |
| concepts[23].id | https://openalex.org/C142724271 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[23].display_name | Pathology |
| concepts[24].id | https://openalex.org/C202444582 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[24].display_name | Pure mathematics |
| keywords[0].id | https://openalex.org/keywords/dbscan |
| keywords[0].score | 0.8217143416404724 |
| keywords[0].display_name | DBSCAN |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6855639219284058 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/noise |
| keywords[2].score | 0.5513508319854736 |
| keywords[2].display_name | Noise (video) |
| keywords[3].id | https://openalex.org/keywords/field |
| keywords[3].score | 0.5327674746513367 |
| keywords[3].display_name | Field (mathematics) |
| keywords[4].id | https://openalex.org/keywords/coupling |
| keywords[4].score | 0.5230944156646729 |
| keywords[4].display_name | Coupling (piping) |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.5061227679252625 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/cluster-analysis |
| keywords[6].score | 0.5036758780479431 |
| keywords[6].display_name | Cluster analysis |
| keywords[7].id | https://openalex.org/keywords/anomaly-detection |
| keywords[7].score | 0.4499708414077759 |
| keywords[7].display_name | Anomaly detection |
| keywords[8].id | https://openalex.org/keywords/intrusion-detection-system |
| keywords[8].score | 0.4136536419391632 |
| keywords[8].display_name | Intrusion detection system |
| keywords[9].id | https://openalex.org/keywords/protocol |
| keywords[9].score | 0.41294345259666443 |
| keywords[9].display_name | Protocol (science) |
| keywords[10].id | https://openalex.org/keywords/piecewise |
| keywords[10].score | 0.4110875725746155 |
| keywords[10].display_name | Piecewise |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.3994705080986023 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.35957232117652893 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/real-time-computing |
| keywords[13].score | 0.3284072279930115 |
| keywords[13].display_name | Real-time computing |
| keywords[14].id | https://openalex.org/keywords/engineering |
| keywords[14].score | 0.15421968698501587 |
| keywords[14].display_name | Engineering |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.13253843784332275 |
| keywords[15].display_name | Mathematics |
| keywords[16].id | https://openalex.org/keywords/image |
| keywords[16].score | 0.11846661567687988 |
| keywords[16].display_name | Image (mathematics) |
| keywords[17].id | https://openalex.org/keywords/fuzzy-clustering |
| keywords[17].score | 0.09593114256858826 |
| keywords[17].display_name | Fuzzy clustering |
| language | en |
| locations[0].id | doi:10.1051/e3sconf/202126002005 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210186093 |
| locations[0].source.issn | 2267-1242, 2555-0403 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2267-1242 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | E3S Web of Conferences |
| locations[0].source.host_organization | https://openalex.org/P4310319748 |
| locations[0].source.host_organization_name | EDP Sciences |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319748 |
| locations[0].source.host_organization_lineage_names | EDP Sciences |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/36/e3sconf_aepee2021_02005.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | E3S Web of Conferences |
| locations[0].landing_page_url | https://doi.org/10.1051/e3sconf/202126002005 |
| locations[1].id | pmh:oai:edpsciences.org:dkey/10.1051/e3sconf/202126002005 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400744 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Springer Link (Chiba Institute of Technology) |
| locations[1].source.host_organization | https://openalex.org/I8488066 |
| locations[1].source.host_organization_name | Chiba Institute of Technology |
| locations[1].source.host_organization_lineage | https://openalex.org/I8488066 |
| locations[1].license | |
| locations[1].pdf_url | https://www.e3s-conferences.org/10.1051/e3sconf/202126002005/pdf |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | https://doi.org/10.1051/e3sconf/202126002005 |
| locations[1].landing_page_url | |
| locations[2].id | pmh:oai:doaj.org/article:8f11d8044bbe44b497b1fd73e71d0ff7 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | E3S Web of Conferences, Vol 260, p 02005 (2021) |
| locations[2].landing_page_url | https://doaj.org/article/8f11d8044bbe44b497b1fd73e71d0ff7 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100536566 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jianwei Tian |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4387155567 |
| authorships[0].affiliations[0].raw_affiliation_string | State Grid Hunan Electric Power Company Limited Information and Communication Company, Changsha, China |
| authorships[0].affiliations[1].raw_affiliation_string | Hunan Key Laboratory of Ubiquitous Power Internet of Things, Changsha, China |
| authorships[0].institutions[0].id | https://openalex.org/I4387155567 |
| authorships[0].institutions[0].ror | https://ror.org/00e17m144 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I4387155567 |
| authorships[0].institutions[0].country_code | |
| authorships[0].institutions[0].display_name | State Grid Hunan Electric Power Company Limited |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jianwei Tian |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Hunan Key Laboratory of Ubiquitous Power Internet of Things, Changsha, China, State Grid Hunan Electric Power Company Limited Information and Communication Company, Changsha, China |
| authorships[1].author.id | https://openalex.org/A5040317905 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8869-4152 |
| authorships[1].author.display_name | Zongchao Yu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I16609230 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Electrical and Information Engineering, Hunan University, Changsha, China |
| authorships[1].institutions[0].id | https://openalex.org/I16609230 |
| authorships[1].institutions[0].ror | https://ror.org/05htk5m33 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I16609230 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Hunan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zongchao Yu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Electrical and Information Engineering, Hunan University, Changsha, China |
| authorships[2].author.id | https://openalex.org/A5100418759 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9147-3855 |
| authorships[2].author.display_name | Li Liu |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4387155567 |
| authorships[2].affiliations[0].raw_affiliation_string | State Grid Hunan Electric Power Co., Ltd., Changsha, China |
| authorships[2].institutions[0].id | https://openalex.org/I4387155567 |
| authorships[2].institutions[0].ror | https://ror.org/00e17m144 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4387155567 |
| authorships[2].institutions[0].country_code | |
| authorships[2].institutions[0].display_name | State Grid Hunan Electric Power Company Limited |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Li Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | State Grid Hunan Electric Power Co., Ltd., Changsha, China |
| authorships[3].author.id | https://openalex.org/A5059968882 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6647-9099 |
| authorships[3].author.display_name | Weidong Wu |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4387155567 |
| authorships[3].affiliations[0].raw_affiliation_string | State Grid Hunan Electric Power Co., Ltd., Changsha, China |
| authorships[3].institutions[0].id | https://openalex.org/I4387155567 |
| authorships[3].institutions[0].ror | https://ror.org/00e17m144 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4387155567 |
| authorships[3].institutions[0].country_code | |
| authorships[3].institutions[0].display_name | State Grid Hunan Electric Power Company Limited |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Weidong Wu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | State Grid Hunan Electric Power Co., Ltd., Changsha, China |
| authorships[4].author.id | https://openalex.org/A5080746354 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3955-8314 |
| authorships[4].author.display_name | Hongyu Zhu |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4387155567 |
| authorships[4].affiliations[0].raw_affiliation_string | State Grid Hunan Electric Power Company Limited Information and Communication Company, Changsha, China |
| authorships[4].affiliations[1].raw_affiliation_string | Hunan Key Laboratory of Ubiquitous Power Internet of Things, Changsha, China |
| authorships[4].institutions[0].id | https://openalex.org/I4387155567 |
| authorships[4].institutions[0].ror | https://ror.org/00e17m144 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I4387155567 |
| authorships[4].institutions[0].country_code | |
| authorships[4].institutions[0].display_name | State Grid Hunan Electric Power Company Limited |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hongyu Zhu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Hunan Key Laboratory of Ubiquitous Power Internet of Things, Changsha, China, State Grid Hunan Electric Power Company Limited Information and Communication Company, Changsha, China |
| authorships[5].author.id | https://openalex.org/A5100362300 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2402-0888 |
| authorships[5].author.display_name | Xuan Liu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I16609230 |
| authorships[5].affiliations[0].raw_affiliation_string | College of Electrical and Information Engineering, Hunan University, Changsha, China |
| authorships[5].institutions[0].id | https://openalex.org/I16609230 |
| authorships[5].institutions[0].ror | https://ror.org/05htk5m33 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I16609230 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Hunan University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Xuan Liu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | College of Electrical and Information Engineering, Hunan University, Changsha, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/36/e3sconf_aepee2021_02005.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-05-24T00:00:00 |
| display_name | An abnormal traffic detection method in smart substations based on coupling field extraction and DBSCAN |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10917 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Smart Grid Security and Resilience |
| related_works | https://openalex.org/W3163639875, https://openalex.org/W2364999035, https://openalex.org/W4226497289, https://openalex.org/W2966681114, https://openalex.org/W4386078164, https://openalex.org/W2369356834, https://openalex.org/W2553918434, https://openalex.org/W2356023405, https://openalex.org/W3105289658, https://openalex.org/W4377236448 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1051/e3sconf/202126002005 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210186093 |
| best_oa_location.source.issn | 2267-1242, 2555-0403 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2267-1242 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | E3S Web of Conferences |
| best_oa_location.source.host_organization | https://openalex.org/P4310319748 |
| best_oa_location.source.host_organization_name | EDP Sciences |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319748 |
| best_oa_location.source.host_organization_lineage_names | EDP Sciences |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/36/e3sconf_aepee2021_02005.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | E3S Web of Conferences |
| best_oa_location.landing_page_url | https://doi.org/10.1051/e3sconf/202126002005 |
| primary_location.id | doi:10.1051/e3sconf/202126002005 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210186093 |
| primary_location.source.issn | 2267-1242, 2555-0403 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2267-1242 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | E3S Web of Conferences |
| primary_location.source.host_organization | https://openalex.org/P4310319748 |
| primary_location.source.host_organization_name | EDP Sciences |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319748 |
| primary_location.source.host_organization_lineage_names | EDP Sciences |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/36/e3sconf_aepee2021_02005.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | E3S Web of Conferences |
| primary_location.landing_page_url | https://doi.org/10.1051/e3sconf/202126002005 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3013642240, https://openalex.org/W2822569858, https://openalex.org/W2003445792, https://openalex.org/W1963576557, https://openalex.org/W2093197140, https://openalex.org/W2797025128, https://openalex.org/W2979838391, https://openalex.org/W3117827099, https://openalex.org/W2147066793, https://openalex.org/W2084632477, https://openalex.org/W2515527499, https://openalex.org/W2529525882, https://openalex.org/W1970856950, https://openalex.org/W2966681114, https://openalex.org/W3107151760 |
| referenced_works_count | 15 |
| abstract_inverted_index.a | 51 |
| abstract_inverted_index.By | 116 |
| abstract_inverted_index.To | 80 |
| abstract_inverted_index.an | 95 |
| abstract_inverted_index.be | 149 |
| abstract_inverted_index.by | 24, 151 |
| abstract_inverted_index.in | 28, 90, 136 |
| abstract_inverted_index.is | 18 |
| abstract_inverted_index.it | 17 |
| abstract_inverted_index.of | 13, 50, 54, 111, 125 |
| abstract_inverted_index.on | 46, 101, 167 |
| abstract_inverted_index.or | 73 |
| abstract_inverted_index.so | 16 |
| abstract_inverted_index.to | 5, 9, 20, 71, 120, 132, 160 |
| abstract_inverted_index.we | 93 |
| abstract_inverted_index.The | 164 |
| abstract_inverted_index.all | 44 |
| abstract_inverted_index.and | 59, 77, 84, 106, 129, 158 |
| abstract_inverted_index.can | 148, 177 |
| abstract_inverted_index.due | 8 |
| abstract_inverted_index.for | 38 |
| abstract_inverted_index.the | 10, 41, 47, 55, 61, 87, 102, 107, 122, 126, 134, 137, 140, 145, 152, 173, 180 |
| abstract_inverted_index.been | 34 |
| abstract_inverted_index.deep | 62, 141 |
| abstract_inverted_index.have | 33 |
| abstract_inverted_index.high | 11 |
| abstract_inverted_index.lead | 70 |
| abstract_inverted_index.less | 74 |
| abstract_inverted_index.many | 35 |
| abstract_inverted_index.more | 3, 72 |
| abstract_inverted_index.ones | 43 |
| abstract_inverted_index.that | 172 |
| abstract_inverted_index.this | 82, 91 |
| abstract_inverted_index.used | 159 |
| abstract_inverted_index.with | 113 |
| abstract_inverted_index.Smart | 0 |
| abstract_inverted_index.among | 65 |
| abstract_inverted_index.based | 100 |
| abstract_inverted_index.check | 49 |
| abstract_inverted_index.cyber | 6 |
| abstract_inverted_index.false | 75 |
| abstract_inverted_index.field | 53, 104 |
| abstract_inverted_index.focus | 45 |
| abstract_inverted_index.mined | 150 |
| abstract_inverted_index.noise | 114, 135 |
| abstract_inverted_index.prove | 171 |
| abstract_inverted_index.smart | 29 |
| abstract_inverted_index.there | 32 |
| abstract_inverted_index.using | 117, 130 |
| abstract_inverted_index.which | 69 |
| abstract_inverted_index.10,000 | 168 |
| abstract_inverted_index.DBSCAN | 131 |
| abstract_inverted_index.detect | 21, 161 |
| abstract_inverted_index.fields | 124, 128, 147 |
| abstract_inverted_index.format | 48 |
| abstract_inverted_index.frames | 169 |
| abstract_inverted_index.ignore | 60 |
| abstract_inverted_index.linear | 154 |
| abstract_inverted_index.method | 99, 176 |
| abstract_inverted_index.missed | 78 |
| abstract_inverted_index.paper, | 92 |
| abstract_inverted_index.remove | 133 |
| abstract_inverted_index.single | 52 |
| abstract_inverted_index.attacks | 7 |
| abstract_inverted_index.becomes | 2 |
| abstract_inverted_index.between | 144 |
| abstract_inverted_index.extract | 121 |
| abstract_inverted_index.fields, | 68, 139 |
| abstract_inverted_index.fitting | 156 |
| abstract_inverted_index.further | 85 |
| abstract_inverted_index.improve | 86 |
| abstract_inverted_index.method, | 157 |
| abstract_inverted_index.methods | 37 |
| abstract_inverted_index.problem | 83 |
| abstract_inverted_index.propose | 94 |
| abstract_inverted_index.results | 166 |
| abstract_inverted_index.spatial | 109 |
| abstract_inverted_index.traffic | 26, 97, 170 |
| abstract_inverted_index.Although | 31 |
| abstract_inverted_index.abnormal | 25, 39, 96, 162, 181 |
| abstract_inverted_index.analysis | 27, 119 |
| abstract_inverted_index.coupling | 63, 103, 123, 138, 142, 146 |
| abstract_inverted_index.existing | 42 |
| abstract_inverted_index.function | 155 |
| abstract_inverted_index.identify | 179 |
| abstract_inverted_index.multiple | 66 |
| abstract_inverted_index.overcome | 81 |
| abstract_inverted_index.proposed | 174 |
| abstract_inverted_index.protocol | 67, 127 |
| abstract_inverted_index.traffic, | 40 |
| abstract_inverted_index.traffic. | 163, 182 |
| abstract_inverted_index.(DBSCAN). | 115 |
| abstract_inverted_index.accuracy, | 89 |
| abstract_inverted_index.behaviour | 23 |
| abstract_inverted_index.detection | 36, 88, 98, 175 |
| abstract_inverted_index.essential | 19 |
| abstract_inverted_index.intrusion | 22 |
| abstract_inverted_index.piecewise | 153 |
| abstract_inverted_index.protocol, | 58 |
| abstract_inverted_index.Substation | 1 |
| abstract_inverted_index.clustering | 110 |
| abstract_inverted_index.detections | 76 |
| abstract_inverted_index.extraction | 105 |
| abstract_inverted_index.industrial | 56 |
| abstract_inverted_index.simulation | 165 |
| abstract_inverted_index.vulnerable | 4 |
| abstract_inverted_index.correlation | 118 |
| abstract_inverted_index.detections. | 79 |
| abstract_inverted_index.effectively | 178 |
| abstract_inverted_index.information | 14 |
| abstract_inverted_index.integration | 12 |
| abstract_inverted_index.applications | 112 |
| abstract_inverted_index.relationship | 143 |
| abstract_inverted_index.substations. | 30 |
| abstract_inverted_index.transmission | 57 |
| abstract_inverted_index.density-based | 108 |
| abstract_inverted_index.relationships | 64 |
| abstract_inverted_index.technologies, | 15 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.42869155 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |