An Accurate and Efficient Device-Free Localization Approach Based on Sparse Coding in Subspace Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1109/access.2018.2876034
In practical device-free localization (DFL) applications, for enlarging the monitoring area and improving localization accuracy, too many nodes need to be deployed, which results in a large volume of DFL data with high dimensions. This arises a key problem of seeking an accurate and efficient approach for DFL. In order to address this problem, this paper regards DFL as a problem of sparse-representation-based classification; builds a sparse model; and then proposes two sparse-coding-based algorithms. The first algorithm, sparse coding via the iterative shrinkage-thresholding algorithm (SC-ISTA), is efficient for handling high-dimensional data. And then, subspace techniques are further utilized, followed by performing sparse coding in the low-dimensional signal subspace, which leads to the second algorithm termed subspace-based SC-ISTA (SSC-ISTA). Experiments with the real-world data set are conducted for single-target and multi-target localization, and three typical machine learning algorithms, deep learning based on auto encoder, K-nearest neighbor, and orthogonal matching pursuit, are compared. Experimental results show that both SC-ISTA and SSC-ISTA can achieve high localization accuracies of 100% and are robust to noisy data when SNR is greater than 10 dB, and the time costs for sparse coding of SC-ISTA and SSC-ISTA are 2.1 × 10-3 s and 2.1 × 10-4 s respectively, which indicates that the proposed algorithms outperform the other three ones.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2018.2876034
- OA Status
- gold
- Cited By
- 35
- References
- 55
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2896466913
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2896466913Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2018.2876034Digital Object Identifier
- Title
-
An Accurate and Efficient Device-Free Localization Approach Based on Sparse Coding in SubspaceWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-01-01Full publication date if available
- Authors
-
Huakun Huang, Haoli Zhao, Xiang Li, Shuxue Ding, Lingjun Zhao, Zhenni LiList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2018.2876034Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2018.2876034Direct OA link when available
- Concepts
-
Subspace topology, Matching pursuit, Neural coding, Computer science, Encoder, Coding (social sciences), Sparse approximation, Artificial intelligence, Pattern recognition (psychology), Algorithm, Compressed sensing, Mathematics, Operating system, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
35Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2023: 6, 2022: 6, 2021: 3, 2020: 5Per-year citation counts (last 5 years)
- References (count)
-
55Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2896466913 |
|---|---|
| doi | https://doi.org/10.1109/access.2018.2876034 |
| ids.doi | https://doi.org/10.1109/access.2018.2876034 |
| ids.mag | 2896466913 |
| ids.openalex | https://openalex.org/W2896466913 |
| fwci | 2.45504741 |
| type | article |
| title | An Accurate and Efficient Device-Free Localization Approach Based on Sparse Coding in Subspace |
| awards[0].id | https://openalex.org/G4231305541 |
| awards[0].funder_id | https://openalex.org/F4320334764 |
| awards[0].display_name | |
| awards[0].funder_award_id | 16K00335 |
| awards[0].funder_display_name | Japan Society for the Promotion of Science |
| biblio.issue | |
| biblio.volume | 6 |
| biblio.last_page | 61799 |
| biblio.first_page | 61782 |
| topics[0].id | https://openalex.org/T10326 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Indoor and Outdoor Localization Technologies |
| topics[1].id | https://openalex.org/T10500 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | Sparse and Compressive Sensing Techniques |
| topics[2].id | https://openalex.org/T11192 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9984999895095825 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2212 |
| topics[2].subfield.display_name | Ocean Engineering |
| topics[2].display_name | Underwater Vehicles and Communication Systems |
| funders[0].id | https://openalex.org/F4320334764 |
| funders[0].ror | https://ror.org/00hhkn466 |
| funders[0].display_name | Japan Society for the Promotion of Science |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C32834561 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7562011480331421 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q660730 |
| concepts[0].display_name | Subspace topology |
| concepts[1].id | https://openalex.org/C156872377 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7243555188179016 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6786281 |
| concepts[1].display_name | Matching pursuit |
| concepts[2].id | https://openalex.org/C77637269 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6133335828781128 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7002051 |
| concepts[2].display_name | Neural coding |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6132161617279053 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C118505674 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5689133405685425 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[4].display_name | Encoder |
| concepts[5].id | https://openalex.org/C179518139 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5182602405548096 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5140297 |
| concepts[5].display_name | Coding (social sciences) |
| concepts[6].id | https://openalex.org/C124066611 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5145663619041443 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q28684319 |
| concepts[6].display_name | Sparse approximation |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4641175866127014 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4047052562236786 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3975027799606323 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C124851039 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3104824125766754 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2665459 |
| concepts[10].display_name | Compressed sensing |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.23205497860908508 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C111919701 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[12].display_name | Operating system |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/subspace-topology |
| keywords[0].score | 0.7562011480331421 |
| keywords[0].display_name | Subspace topology |
| keywords[1].id | https://openalex.org/keywords/matching-pursuit |
| keywords[1].score | 0.7243555188179016 |
| keywords[1].display_name | Matching pursuit |
| keywords[2].id | https://openalex.org/keywords/neural-coding |
| keywords[2].score | 0.6133335828781128 |
| keywords[2].display_name | Neural coding |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6132161617279053 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/encoder |
| keywords[4].score | 0.5689133405685425 |
| keywords[4].display_name | Encoder |
| keywords[5].id | https://openalex.org/keywords/coding |
| keywords[5].score | 0.5182602405548096 |
| keywords[5].display_name | Coding (social sciences) |
| keywords[6].id | https://openalex.org/keywords/sparse-approximation |
| keywords[6].score | 0.5145663619041443 |
| keywords[6].display_name | Sparse approximation |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.4641175866127014 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.4047052562236786 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.3975027799606323 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/compressed-sensing |
| keywords[10].score | 0.3104824125766754 |
| keywords[10].display_name | Compressed sensing |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.23205497860908508 |
| keywords[11].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1109/access.2018.2876034 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2018.2876034 |
| locations[1].id | pmh:oai:doaj.org/article:14677169239649078ac5e2cd2c5fb44e |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 6, Pp 61782-61799 (2018) |
| locations[1].landing_page_url | https://doaj.org/article/14677169239649078ac5e2cd2c5fb44e |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5056303769 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2853-8892 |
| authorships[0].author.display_name | Huakun Huang |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I141591182 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Japan |
| authorships[0].institutions[0].id | https://openalex.org/I141591182 |
| authorships[0].institutions[0].ror | https://ror.org/02pg0e883 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I141591182 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | University of Aizu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Huakun Huang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Japan |
| authorships[1].author.id | https://openalex.org/A5023248590 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4004-509X |
| authorships[1].author.display_name | Haoli Zhao |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I141591182 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Japan |
| authorships[1].institutions[0].id | https://openalex.org/I141591182 |
| authorships[1].institutions[0].ror | https://ror.org/02pg0e883 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I141591182 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | University of Aizu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Haoli Zhao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Japan |
| authorships[2].author.id | https://openalex.org/A5022516253 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3919-2658 |
| authorships[2].author.display_name | Xiang Li |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I141591182 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Japan |
| authorships[2].institutions[0].id | https://openalex.org/I141591182 |
| authorships[2].institutions[0].ror | https://ror.org/02pg0e883 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I141591182 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | University of Aizu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiang Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Japan |
| authorships[3].author.id | https://openalex.org/A5009582696 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4963-3883 |
| authorships[3].author.display_name | Shuxue Ding |
| authorships[3].countries | JP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I141591182 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Japan |
| authorships[3].institutions[0].id | https://openalex.org/I141591182 |
| authorships[3].institutions[0].ror | https://ror.org/02pg0e883 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I141591182 |
| authorships[3].institutions[0].country_code | JP |
| authorships[3].institutions[0].display_name | University of Aizu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shuxue Ding |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Japan |
| authorships[4].author.id | https://openalex.org/A5009225924 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2369-8862 |
| authorships[4].author.display_name | Lingjun Zhao |
| authorships[4].countries | JP |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I141591182 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Japan |
| authorships[4].institutions[0].id | https://openalex.org/I141591182 |
| authorships[4].institutions[0].ror | https://ror.org/02pg0e883 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I141591182 |
| authorships[4].institutions[0].country_code | JP |
| authorships[4].institutions[0].display_name | University of Aizu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Lingjun Zhao |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Japan |
| authorships[5].author.id | https://openalex.org/A5062429830 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8098-0341 |
| authorships[5].author.display_name | Zhenni Li |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I139024713 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Automation, Guangdong Key Laboratory of IoT Information Technology, Guangdong University of Technology, Guangzhou, China |
| authorships[5].institutions[0].id | https://openalex.org/I139024713 |
| authorships[5].institutions[0].ror | https://ror.org/04azbjn80 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I139024713 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Guangdong University of Technology |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Zhenni Li |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Automation, Guangdong Key Laboratory of IoT Information Technology, Guangdong University of Technology, Guangzhou, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2018.2876034 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Accurate and Efficient Device-Free Localization Approach Based on Sparse Coding in Subspace |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10326 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Indoor and Outdoor Localization Technologies |
| related_works | https://openalex.org/W2098521117, https://openalex.org/W2465351041, https://openalex.org/W4385694579, https://openalex.org/W2340242818, https://openalex.org/W4300881421, https://openalex.org/W2103001330, https://openalex.org/W4319793311, https://openalex.org/W2241396314, https://openalex.org/W2262109992, https://openalex.org/W1998873033 |
| cited_by_count | 35 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 6 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 3 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 5 |
| counts_by_year[5].year | 2019 |
| counts_by_year[5].cited_by_count | 12 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2018.2876034 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2018.2876034 |
| primary_location.id | doi:10.1109/access.2018.2876034 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2018.2876034 |
| publication_date | 2018-01-01 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2085205241, https://openalex.org/W1988348999, https://openalex.org/W2056873685, https://openalex.org/W2106806426, https://openalex.org/W2126300356, https://openalex.org/W2086042828, https://openalex.org/W2794105321, https://openalex.org/W2170589361, https://openalex.org/W1941817920, https://openalex.org/W2157291767, https://openalex.org/W2164692160, https://openalex.org/W2152151699, https://openalex.org/W2612932412, https://openalex.org/W2791441927, https://openalex.org/W2341859130, https://openalex.org/W2146949217, https://openalex.org/W2550769397, https://openalex.org/W6666007004, https://openalex.org/W2045107598, https://openalex.org/W2610531996, https://openalex.org/W6609634455, https://openalex.org/W2085692415, https://openalex.org/W2786890897, https://openalex.org/W2340240548, https://openalex.org/W2034863431, https://openalex.org/W2044831755, https://openalex.org/W2460055519, https://openalex.org/W2790168642, https://openalex.org/W2595124690, https://openalex.org/W1970398760, https://openalex.org/W2963526543, https://openalex.org/W2151034334, https://openalex.org/W2558891025, https://openalex.org/W2796478058, https://openalex.org/W2338095309, https://openalex.org/W2594663467, https://openalex.org/W2584565614, https://openalex.org/W2344330137, https://openalex.org/W2801636644, https://openalex.org/W1492719521, https://openalex.org/W2121477819, https://openalex.org/W767874142, https://openalex.org/W2100556411, https://openalex.org/W2241665719, https://openalex.org/W2129812935, https://openalex.org/W2314627352, https://openalex.org/W2129638195, https://openalex.org/W2154332973, https://openalex.org/W2783231089, https://openalex.org/W2152178374, https://openalex.org/W2783165089, https://openalex.org/W2605793178, https://openalex.org/W2061814647, https://openalex.org/W2169694673, https://openalex.org/W262970172 |
| referenced_works_count | 55 |
| abstract_inverted_index.a | 25, 36, 59, 65 |
| abstract_inverted_index.s | 194, 199 |
| abstract_inverted_index.10 | 177 |
| abstract_inverted_index.In | 0, 48 |
| abstract_inverted_index.an | 41 |
| abstract_inverted_index.as | 58 |
| abstract_inverted_index.be | 20 |
| abstract_inverted_index.by | 99 |
| abstract_inverted_index.in | 24, 103 |
| abstract_inverted_index.is | 85, 174 |
| abstract_inverted_index.of | 28, 39, 61, 164, 186 |
| abstract_inverted_index.on | 140 |
| abstract_inverted_index.to | 19, 50, 110, 169 |
| abstract_inverted_index.2.1 | 191, 196 |
| abstract_inverted_index.And | 91 |
| abstract_inverted_index.DFL | 29, 57 |
| abstract_inverted_index.SNR | 173 |
| abstract_inverted_index.The | 74 |
| abstract_inverted_index.and | 11, 43, 68, 128, 131, 145, 157, 166, 179, 188, 195 |
| abstract_inverted_index.are | 95, 124, 149, 167, 190 |
| abstract_inverted_index.can | 159 |
| abstract_inverted_index.dB, | 178 |
| abstract_inverted_index.for | 6, 46, 87, 126, 183 |
| abstract_inverted_index.key | 37 |
| abstract_inverted_index.set | 123 |
| abstract_inverted_index.the | 8, 80, 104, 111, 120, 180, 204, 208 |
| abstract_inverted_index.too | 15 |
| abstract_inverted_index.two | 71 |
| abstract_inverted_index.via | 79 |
| abstract_inverted_index.100% | 165 |
| abstract_inverted_index.DFL. | 47 |
| abstract_inverted_index.This | 34 |
| abstract_inverted_index.area | 10 |
| abstract_inverted_index.auto | 141 |
| abstract_inverted_index.both | 155 |
| abstract_inverted_index.data | 30, 122, 171 |
| abstract_inverted_index.deep | 137 |
| abstract_inverted_index.high | 32, 161 |
| abstract_inverted_index.many | 16 |
| abstract_inverted_index.need | 18 |
| abstract_inverted_index.show | 153 |
| abstract_inverted_index.than | 176 |
| abstract_inverted_index.that | 154, 203 |
| abstract_inverted_index.then | 69 |
| abstract_inverted_index.this | 52, 54 |
| abstract_inverted_index.time | 181 |
| abstract_inverted_index.when | 172 |
| abstract_inverted_index.with | 31, 119 |
| abstract_inverted_index.(DFL) | 4 |
| abstract_inverted_index.based | 139 |
| abstract_inverted_index.costs | 182 |
| abstract_inverted_index.data. | 90 |
| abstract_inverted_index.first | 75 |
| abstract_inverted_index.large | 26 |
| abstract_inverted_index.leads | 109 |
| abstract_inverted_index.nodes | 17 |
| abstract_inverted_index.noisy | 170 |
| abstract_inverted_index.ones. | 211 |
| abstract_inverted_index.order | 49 |
| abstract_inverted_index.other | 209 |
| abstract_inverted_index.paper | 55 |
| abstract_inverted_index.then, | 92 |
| abstract_inverted_index.three | 132, 210 |
| abstract_inverted_index.which | 22, 108, 201 |
| abstract_inverted_index.arises | 35 |
| abstract_inverted_index.builds | 64 |
| abstract_inverted_index.coding | 78, 102, 185 |
| abstract_inverted_index.model; | 67 |
| abstract_inverted_index.robust | 168 |
| abstract_inverted_index.second | 112 |
| abstract_inverted_index.signal | 106 |
| abstract_inverted_index.sparse | 66, 77, 101, 184 |
| abstract_inverted_index.termed | 114 |
| abstract_inverted_index.volume | 27 |
| abstract_inverted_index.SC-ISTA | 116, 156, 187 |
| abstract_inverted_index.achieve | 160 |
| abstract_inverted_index.address | 51 |
| abstract_inverted_index.further | 96 |
| abstract_inverted_index.greater | 175 |
| abstract_inverted_index.machine | 134 |
| abstract_inverted_index.problem | 38, 60 |
| abstract_inverted_index.regards | 56 |
| abstract_inverted_index.results | 23, 152 |
| abstract_inverted_index.seeking | 40 |
| abstract_inverted_index.typical | 133 |
| abstract_inverted_index.× | 192, 197 |
| abstract_inverted_index.SSC-ISTA | 158, 189 |
| abstract_inverted_index.accurate | 42 |
| abstract_inverted_index.approach | 45 |
| abstract_inverted_index.encoder, | 142 |
| abstract_inverted_index.followed | 98 |
| abstract_inverted_index.handling | 88 |
| abstract_inverted_index.learning | 135, 138 |
| abstract_inverted_index.matching | 147 |
| abstract_inverted_index.problem, | 53 |
| abstract_inverted_index.proposed | 205 |
| abstract_inverted_index.proposes | 70 |
| abstract_inverted_index.pursuit, | 148 |
| abstract_inverted_index.subspace | 93 |
| abstract_inverted_index.K-nearest | 143 |
| abstract_inverted_index.accuracy, | 14 |
| abstract_inverted_index.algorithm | 83, 113 |
| abstract_inverted_index.compared. | 150 |
| abstract_inverted_index.conducted | 125 |
| abstract_inverted_index.deployed, | 21 |
| abstract_inverted_index.efficient | 44, 86 |
| abstract_inverted_index.enlarging | 7 |
| abstract_inverted_index.improving | 12 |
| abstract_inverted_index.indicates | 202 |
| abstract_inverted_index.iterative | 81 |
| abstract_inverted_index.neighbor, | 144 |
| abstract_inverted_index.practical | 1 |
| abstract_inverted_index.subspace, | 107 |
| abstract_inverted_index.utilized, | 97 |
| abstract_inverted_index.(SC-ISTA), | 84 |
| abstract_inverted_index.accuracies | 163 |
| abstract_inverted_index.algorithm, | 76 |
| abstract_inverted_index.algorithms | 206 |
| abstract_inverted_index.monitoring | 9 |
| abstract_inverted_index.orthogonal | 146 |
| abstract_inverted_index.outperform | 207 |
| abstract_inverted_index.performing | 100 |
| abstract_inverted_index.real-world | 121 |
| abstract_inverted_index.techniques | 94 |
| abstract_inverted_index.(SSC-ISTA). | 117 |
| abstract_inverted_index.Experiments | 118 |
| abstract_inverted_index.algorithms, | 136 |
| abstract_inverted_index.algorithms. | 73 |
| abstract_inverted_index.device-free | 2 |
| abstract_inverted_index.dimensions. | 33 |
| abstract_inverted_index.Experimental | 151 |
| abstract_inverted_index.localization | 3, 13, 162 |
| abstract_inverted_index.multi-target | 129 |
| abstract_inverted_index.applications, | 5 |
| abstract_inverted_index.localization, | 130 |
| abstract_inverted_index.respectively, | 200 |
| abstract_inverted_index.single-target | 127 |
| abstract_inverted_index.subspace-based | 115 |
| abstract_inverted_index.10<sup>-3</sup> | 193 |
| abstract_inverted_index.10<sup>-4</sup> | 198 |
| abstract_inverted_index.classification; | 63 |
| abstract_inverted_index.low-dimensional | 105 |
| abstract_inverted_index.high-dimensional | 89 |
| abstract_inverted_index.sparse-coding-based | 72 |
| abstract_inverted_index.shrinkage-thresholding | 82 |
| abstract_inverted_index.sparse-representation-based | 62 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.90614965 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |