An Adaptative Wavelet Time–Frequency Transform with Mamba Network for OFDM Automatic Modulation Classification Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/ai6120323
Background: With the development of wireless communication technologies, the rapid advancement of 5G and 6G communication systems has spawned an urgent demand for low latency and high data rates. Orthogonal Frequency Division Multiplexing (OFDM) communication using high-order digital modulation has become a key technology due to its characteristics, such as high reliability, high data rate, and low latency, and has been widely applied in various fields. As a component of cognitive radios, automatic modulation classification (AMC) plays an important role in remote sensing and electromagnetic spectrum sensing. However, under current complex channel conditions, there are issues such as low signal-to-noise ratio (SNR), Doppler frequency shift, and multipath propagation. Methods: Coupled with the inherent problem of indistinct characteristics in high-order modulation, these currently make it difficult for AMC to focus on OFDM and high-order digital modulation. Existing methods are mainly based on a single model-driven approach or data-driven approach. The Adaptive Wavelet Mamba Network (AWMN) proposed in this paper attempts to combine model-driven adaptive wavelet transform feature extraction with the Mamba deep learning architecture. A module based on the lifting wavelet scheme effectively captures discriminative time–frequency features using learnable operations. Meanwhile, a Mamba network constructed based on the State Space Model (SSM) can capture long-term temporal dependencies. This network realizes a combination of model-driven and data-driven methods. Results: Tests conducted on public datasets and a custom-built real-time received OFDM dataset show that the proposed AWMN achieves a performance reaching higher accuracies of 62.39%, 64.50%, and 74.95% on the public Rml2016(a) and Rml2016(b) datasets and our formulated EVAS dataset, while maintaining a compact parameter size of 0.44 M. Conclusions: These results highlight its potential for improving the automatic modulation classification of high-order OFDM modulation in 5G/6G systems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/ai6120323
- https://www.mdpi.com/2673-2688/6/12/323/pdf
- OA Status
- gold
- References
- 30
- OpenAlex ID
- https://openalex.org/W4417161563
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417161563Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/ai6120323Digital Object Identifier
- Title
-
An Adaptative Wavelet Time–Frequency Transform with Mamba Network for OFDM Automatic Modulation ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-09Full publication date if available
- Authors
-
Hongji Xing, Xiaogang Tang, Lu Wang, Binquan Zhang, Y.-X. LiList of authors in order
- Landing page
-
https://doi.org/10.3390/ai6120323Publisher landing page
- PDF URL
-
https://www.mdpi.com/2673-2688/6/12/323/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2673-2688/6/12/323/pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
30Number of works referenced by this work
Full payload
| id | https://openalex.org/W4417161563 |
|---|---|
| doi | https://doi.org/10.3390/ai6120323 |
| ids.doi | https://doi.org/10.3390/ai6120323 |
| ids.openalex | https://openalex.org/W4417161563 |
| fwci | |
| type | article |
| title | An Adaptative Wavelet Time–Frequency Transform with Mamba Network for OFDM Automatic Modulation Classification |
| biblio.issue | 12 |
| biblio.volume | 6 |
| biblio.last_page | 323 |
| biblio.first_page | 323 |
| is_xpac | False |
| apc_list.value | 1000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1082 |
| apc_paid.value | 1000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1082 |
| language | en |
| locations[0].id | doi:10.3390/ai6120323 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210200511 |
| locations[0].source.issn | 2673-2688 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2673-2688 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | AI |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2673-2688/6/12/323/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | AI |
| locations[0].landing_page_url | https://doi.org/10.3390/ai6120323 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5120757932 |
| authorships[0].author.orcid | https://orcid.org/0009-0000-1538-4455 |
| authorships[0].author.display_name | Hongji Xing |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hongji Xing |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5025685460 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3236-6547 |
| authorships[1].author.display_name | Xiaogang Tang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiaogang Tang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100364430 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2248-3328 |
| authorships[2].author.display_name | Lu Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lu Wang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5040252666 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9417-5730 |
| authorships[3].author.display_name | Binquan Zhang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Binquan Zhang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5010641411 |
| authorships[4].author.orcid | https://orcid.org/0009-0009-7913-8224 |
| authorships[4].author.display_name | Y.-X. Li |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yuepeng Li |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2673-2688/6/12/323/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-09T00:00:00 |
| display_name | An Adaptative Wavelet Time–Frequency Transform with Mamba Network for OFDM Automatic Modulation Classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-11T00:21:10.989143 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/ai6120323 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210200511 |
| best_oa_location.source.issn | 2673-2688 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2673-2688 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | AI |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2673-2688/6/12/323/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | AI |
| best_oa_location.landing_page_url | https://doi.org/10.3390/ai6120323 |
| primary_location.id | doi:10.3390/ai6120323 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210200511 |
| primary_location.source.issn | 2673-2688 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2673-2688 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | AI |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2673-2688/6/12/323/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | AI |
| primary_location.landing_page_url | https://doi.org/10.3390/ai6120323 |
| publication_date | 2025-12-09 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4403826439, https://openalex.org/W4411725314, https://openalex.org/W4410294928, https://openalex.org/W4401442065, https://openalex.org/W4400417950, https://openalex.org/W4410639716, https://openalex.org/W2147576921, https://openalex.org/W3002740141, https://openalex.org/W4399768398, https://openalex.org/W2785849994, https://openalex.org/W4285247547, https://openalex.org/W2005956500, https://openalex.org/W2790688030, https://openalex.org/W2884089434, https://openalex.org/W3000943722, https://openalex.org/W4293195393, https://openalex.org/W4403123426, https://openalex.org/W4400230063, https://openalex.org/W3032977069, https://openalex.org/W4393078957, https://openalex.org/W4399666341, https://openalex.org/W4316467837, https://openalex.org/W4323338327, https://openalex.org/W4312245783, https://openalex.org/W4390533968, https://openalex.org/W4396712808, https://openalex.org/W2015370045, https://openalex.org/W2272847350, https://openalex.org/W4401991295, https://openalex.org/W3038716110 |
| referenced_works_count | 30 |
| abstract_inverted_index.A | 173 |
| abstract_inverted_index.a | 41, 67, 141, 190, 209, 223, 235, 259 |
| abstract_inverted_index.5G | 12 |
| abstract_inverted_index.6G | 14 |
| abstract_inverted_index.As | 66 |
| abstract_inverted_index.M. | 265 |
| abstract_inverted_index.an | 19, 77 |
| abstract_inverted_index.as | 49, 97 |
| abstract_inverted_index.in | 63, 80, 117, 155, 282 |
| abstract_inverted_index.it | 123 |
| abstract_inverted_index.of | 4, 11, 69, 114, 211, 240, 263, 278 |
| abstract_inverted_index.on | 129, 140, 176, 195, 219, 245 |
| abstract_inverted_index.or | 145 |
| abstract_inverted_index.to | 45, 127, 159 |
| abstract_inverted_index.AMC | 126 |
| abstract_inverted_index.The | 148 |
| abstract_inverted_index.and | 13, 25, 55, 58, 83, 105, 131, 213, 222, 243, 249, 252 |
| abstract_inverted_index.are | 94, 137 |
| abstract_inverted_index.can | 201 |
| abstract_inverted_index.due | 44 |
| abstract_inverted_index.for | 22, 125, 272 |
| abstract_inverted_index.has | 17, 39, 59 |
| abstract_inverted_index.its | 46, 270 |
| abstract_inverted_index.key | 42 |
| abstract_inverted_index.low | 23, 56, 98 |
| abstract_inverted_index.our | 253 |
| abstract_inverted_index.the | 2, 8, 111, 168, 177, 196, 231, 246, 274 |
| abstract_inverted_index.0.44 | 264 |
| abstract_inverted_index.AWMN | 233 |
| abstract_inverted_index.EVAS | 255 |
| abstract_inverted_index.OFDM | 130, 227, 280 |
| abstract_inverted_index.This | 206 |
| abstract_inverted_index.With | 1 |
| abstract_inverted_index.been | 60 |
| abstract_inverted_index.data | 27, 53 |
| abstract_inverted_index.deep | 170 |
| abstract_inverted_index.high | 26, 50, 52 |
| abstract_inverted_index.make | 122 |
| abstract_inverted_index.role | 79 |
| abstract_inverted_index.show | 229 |
| abstract_inverted_index.size | 262 |
| abstract_inverted_index.such | 48, 96 |
| abstract_inverted_index.that | 230 |
| abstract_inverted_index.this | 156 |
| abstract_inverted_index.with | 110, 167 |
| abstract_inverted_index.(AMC) | 75 |
| abstract_inverted_index.(SSM) | 200 |
| abstract_inverted_index.5G/6G | 283 |
| abstract_inverted_index.Mamba | 151, 169, 191 |
| abstract_inverted_index.Model | 199 |
| abstract_inverted_index.Space | 198 |
| abstract_inverted_index.State | 197 |
| abstract_inverted_index.Tests | 217 |
| abstract_inverted_index.These | 267 |
| abstract_inverted_index.based | 139, 175, 194 |
| abstract_inverted_index.focus | 128 |
| abstract_inverted_index.paper | 157 |
| abstract_inverted_index.plays | 76 |
| abstract_inverted_index.rapid | 9 |
| abstract_inverted_index.rate, | 54 |
| abstract_inverted_index.ratio | 100 |
| abstract_inverted_index.there | 93 |
| abstract_inverted_index.these | 120 |
| abstract_inverted_index.under | 88 |
| abstract_inverted_index.using | 35, 186 |
| abstract_inverted_index.while | 257 |
| abstract_inverted_index.(AWMN) | 153 |
| abstract_inverted_index.(OFDM) | 33 |
| abstract_inverted_index.(SNR), | 101 |
| abstract_inverted_index.74.95% | 244 |
| abstract_inverted_index.become | 40 |
| abstract_inverted_index.demand | 21 |
| abstract_inverted_index.higher | 238 |
| abstract_inverted_index.issues | 95 |
| abstract_inverted_index.mainly | 138 |
| abstract_inverted_index.module | 174 |
| abstract_inverted_index.public | 220, 247 |
| abstract_inverted_index.rates. | 28 |
| abstract_inverted_index.remote | 81 |
| abstract_inverted_index.scheme | 180 |
| abstract_inverted_index.shift, | 104 |
| abstract_inverted_index.single | 142 |
| abstract_inverted_index.urgent | 20 |
| abstract_inverted_index.widely | 61 |
| abstract_inverted_index.62.39%, | 241 |
| abstract_inverted_index.64.50%, | 242 |
| abstract_inverted_index.Coupled | 109 |
| abstract_inverted_index.Doppler | 102 |
| abstract_inverted_index.Network | 152 |
| abstract_inverted_index.Wavelet | 150 |
| abstract_inverted_index.applied | 62 |
| abstract_inverted_index.capture | 202 |
| abstract_inverted_index.channel | 91 |
| abstract_inverted_index.combine | 160 |
| abstract_inverted_index.compact | 260 |
| abstract_inverted_index.complex | 90 |
| abstract_inverted_index.current | 89 |
| abstract_inverted_index.dataset | 228 |
| abstract_inverted_index.digital | 37, 133 |
| abstract_inverted_index.feature | 165 |
| abstract_inverted_index.fields. | 65 |
| abstract_inverted_index.latency | 24 |
| abstract_inverted_index.lifting | 178 |
| abstract_inverted_index.methods | 136 |
| abstract_inverted_index.network | 192, 207 |
| abstract_inverted_index.problem | 113 |
| abstract_inverted_index.radios, | 71 |
| abstract_inverted_index.results | 268 |
| abstract_inverted_index.sensing | 82 |
| abstract_inverted_index.spawned | 18 |
| abstract_inverted_index.systems | 16 |
| abstract_inverted_index.various | 64 |
| abstract_inverted_index.wavelet | 163, 179 |
| abstract_inverted_index.Adaptive | 149 |
| abstract_inverted_index.Division | 31 |
| abstract_inverted_index.Existing | 135 |
| abstract_inverted_index.However, | 87 |
| abstract_inverted_index.Methods: | 108 |
| abstract_inverted_index.Results: | 216 |
| abstract_inverted_index.achieves | 234 |
| abstract_inverted_index.adaptive | 162 |
| abstract_inverted_index.approach | 144 |
| abstract_inverted_index.attempts | 158 |
| abstract_inverted_index.captures | 182 |
| abstract_inverted_index.dataset, | 256 |
| abstract_inverted_index.datasets | 221, 251 |
| abstract_inverted_index.features | 185 |
| abstract_inverted_index.inherent | 112 |
| abstract_inverted_index.latency, | 57 |
| abstract_inverted_index.learning | 171 |
| abstract_inverted_index.methods. | 215 |
| abstract_inverted_index.proposed | 154, 232 |
| abstract_inverted_index.reaching | 237 |
| abstract_inverted_index.realizes | 208 |
| abstract_inverted_index.received | 226 |
| abstract_inverted_index.sensing. | 86 |
| abstract_inverted_index.spectrum | 85 |
| abstract_inverted_index.systems. | 284 |
| abstract_inverted_index.temporal | 204 |
| abstract_inverted_index.wireless | 5 |
| abstract_inverted_index.Frequency | 30 |
| abstract_inverted_index.approach. | 147 |
| abstract_inverted_index.automatic | 72, 275 |
| abstract_inverted_index.cognitive | 70 |
| abstract_inverted_index.component | 68 |
| abstract_inverted_index.conducted | 218 |
| abstract_inverted_index.currently | 121 |
| abstract_inverted_index.difficult | 124 |
| abstract_inverted_index.frequency | 103 |
| abstract_inverted_index.highlight | 269 |
| abstract_inverted_index.important | 78 |
| abstract_inverted_index.improving | 273 |
| abstract_inverted_index.learnable | 187 |
| abstract_inverted_index.long-term | 203 |
| abstract_inverted_index.multipath | 106 |
| abstract_inverted_index.parameter | 261 |
| abstract_inverted_index.potential | 271 |
| abstract_inverted_index.real-time | 225 |
| abstract_inverted_index.transform | 164 |
| abstract_inverted_index.Meanwhile, | 189 |
| abstract_inverted_index.Orthogonal | 29 |
| abstract_inverted_index.Rml2016(a) | 248 |
| abstract_inverted_index.Rml2016(b) | 250 |
| abstract_inverted_index.accuracies | 239 |
| abstract_inverted_index.extraction | 166 |
| abstract_inverted_index.formulated | 254 |
| abstract_inverted_index.high-order | 36, 118, 132, 279 |
| abstract_inverted_index.indistinct | 115 |
| abstract_inverted_index.modulation | 38, 73, 276, 281 |
| abstract_inverted_index.technology | 43 |
| abstract_inverted_index.Background: | 0 |
| abstract_inverted_index.advancement | 10 |
| abstract_inverted_index.combination | 210 |
| abstract_inverted_index.conditions, | 92 |
| abstract_inverted_index.constructed | 193 |
| abstract_inverted_index.data-driven | 146, 214 |
| abstract_inverted_index.development | 3 |
| abstract_inverted_index.effectively | 181 |
| abstract_inverted_index.maintaining | 258 |
| abstract_inverted_index.modulation, | 119 |
| abstract_inverted_index.modulation. | 134 |
| abstract_inverted_index.operations. | 188 |
| abstract_inverted_index.performance | 236 |
| abstract_inverted_index.Conclusions: | 266 |
| abstract_inverted_index.Multiplexing | 32 |
| abstract_inverted_index.custom-built | 224 |
| abstract_inverted_index.model-driven | 143, 161, 212 |
| abstract_inverted_index.propagation. | 107 |
| abstract_inverted_index.reliability, | 51 |
| abstract_inverted_index.architecture. | 172 |
| abstract_inverted_index.communication | 6, 15, 34 |
| abstract_inverted_index.dependencies. | 205 |
| abstract_inverted_index.technologies, | 7 |
| abstract_inverted_index.classification | 74, 277 |
| abstract_inverted_index.discriminative | 183 |
| abstract_inverted_index.characteristics | 116 |
| abstract_inverted_index.electromagnetic | 84 |
| abstract_inverted_index.signal-to-noise | 99 |
| abstract_inverted_index.characteristics, | 47 |
| abstract_inverted_index.time–frequency | 184 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |