An Adaptive Diagonal Loading Covariance Matrix Estimator in Spatially Heterogeneous Sea Clutter Article Swipe
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.2991/iwmecs-15.2015.93
The most typical method to estimate the covariance matrix of sea clutter by secondary samples is the sample covariance matrix (SCM), implying secondary samples with the same statistical property.The hypothesis established or not depends on whether or not sea clutter is spatially homogeneous.In order to get rid of the hypothesis on secondary samples, a novel covariance matrix estimation algorithm based on adaptive diagonal loading technique is presented.The loading coefficient is a factor to measure the statistical consistency of secondary samples.Experimental results show that, to detect the distributed targets in real sea clutter by generalized likelihood ratio detector (GLRT), the proposed estimator is robust to jamming and the performance improves in different range resolution sea clutter, especially as high as 15dB in 3m range resolution.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2991/iwmecs-15.2015.93
- https://download.atlantis-press.com/article/25840639.pdf
- OA Status
- gold
- References
- 6
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2200961964
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2200961964Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2991/iwmecs-15.2015.93Digital Object Identifier
- Title
-
An Adaptive Diagonal Loading Covariance Matrix Estimator in Spatially Heterogeneous Sea ClutterWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-01-01Full publication date if available
- Authors
-
Yanling Shi, Xie XiaoyanList of authors in order
- Landing page
-
https://doi.org/10.2991/iwmecs-15.2015.93Publisher landing page
- PDF URL
-
https://download.atlantis-press.com/article/25840639.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://download.atlantis-press.com/article/25840639.pdfDirect OA link when available
- Concepts
-
Clutter, Covariance matrix, Estimator, Diagonal, Covariance, Computer science, Mathematics, Algorithm, Mathematical optimization, Statistics, Radar, Geometry, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
6Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2200961964 |
|---|---|
| doi | https://doi.org/10.2991/iwmecs-15.2015.93 |
| ids.doi | https://doi.org/10.2991/iwmecs-15.2015.93 |
| ids.mag | 2200961964 |
| ids.openalex | https://openalex.org/W2200961964 |
| fwci | 0.0 |
| type | article |
| title | An Adaptive Diagonal Loading Covariance Matrix Estimator in Spatially Heterogeneous Sea Clutter |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10891 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Radar Systems and Signal Processing |
| topics[1].id | https://openalex.org/T11038 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9959999918937683 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Advanced SAR Imaging Techniques |
| topics[2].id | https://openalex.org/T10931 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9837999939918518 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Direction-of-Arrival Estimation Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C132094186 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7851139307022095 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q641585 |
| concepts[0].display_name | Clutter |
| concepts[1].id | https://openalex.org/C185142706 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6966514587402344 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1134404 |
| concepts[1].display_name | Covariance matrix |
| concepts[2].id | https://openalex.org/C185429906 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6091513633728027 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[2].display_name | Estimator |
| concepts[3].id | https://openalex.org/C130367717 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6056161522865295 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q189791 |
| concepts[3].display_name | Diagonal |
| concepts[4].id | https://openalex.org/C178650346 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4510093629360199 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q201984 |
| concepts[4].display_name | Covariance |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.41821953654289246 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.36863720417022705 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.350711464881897 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C126255220 |
| concepts[8].level | 1 |
| concepts[8].score | 0.32218682765960693 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[8].display_name | Mathematical optimization |
| concepts[9].id | https://openalex.org/C105795698 |
| concepts[9].level | 1 |
| concepts[9].score | 0.29897066950798035 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[9].display_name | Statistics |
| concepts[10].id | https://openalex.org/C554190296 |
| concepts[10].level | 2 |
| concepts[10].score | 0.12173900008201599 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q47528 |
| concepts[10].display_name | Radar |
| concepts[11].id | https://openalex.org/C2524010 |
| concepts[11].level | 1 |
| concepts[11].score | 0.08543553948402405 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[11].display_name | Geometry |
| concepts[12].id | https://openalex.org/C76155785 |
| concepts[12].level | 1 |
| concepts[12].score | 0.07131358981132507 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[12].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/clutter |
| keywords[0].score | 0.7851139307022095 |
| keywords[0].display_name | Clutter |
| keywords[1].id | https://openalex.org/keywords/covariance-matrix |
| keywords[1].score | 0.6966514587402344 |
| keywords[1].display_name | Covariance matrix |
| keywords[2].id | https://openalex.org/keywords/estimator |
| keywords[2].score | 0.6091513633728027 |
| keywords[2].display_name | Estimator |
| keywords[3].id | https://openalex.org/keywords/diagonal |
| keywords[3].score | 0.6056161522865295 |
| keywords[3].display_name | Diagonal |
| keywords[4].id | https://openalex.org/keywords/covariance |
| keywords[4].score | 0.4510093629360199 |
| keywords[4].display_name | Covariance |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.41821953654289246 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.36863720417022705 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.350711464881897 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[8].score | 0.32218682765960693 |
| keywords[8].display_name | Mathematical optimization |
| keywords[9].id | https://openalex.org/keywords/statistics |
| keywords[9].score | 0.29897066950798035 |
| keywords[9].display_name | Statistics |
| keywords[10].id | https://openalex.org/keywords/radar |
| keywords[10].score | 0.12173900008201599 |
| keywords[10].display_name | Radar |
| keywords[11].id | https://openalex.org/keywords/geometry |
| keywords[11].score | 0.08543553948402405 |
| keywords[11].display_name | Geometry |
| keywords[12].id | https://openalex.org/keywords/telecommunications |
| keywords[12].score | 0.07131358981132507 |
| keywords[12].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.2991/iwmecs-15.2015.93 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://download.atlantis-press.com/article/25840639.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 2015 2nd International Workshop on Materials Engineering and Computer Sciences |
| locations[0].landing_page_url | https://doi.org/10.2991/iwmecs-15.2015.93 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100983851 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yanling Shi |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I41198531 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Telecommunications & Information Engineering Nanjing University of Posts and Telecommunications Nanjing 210003, China |
| authorships[0].institutions[0].id | https://openalex.org/I41198531 |
| authorships[0].institutions[0].ror | https://ror.org/043bpky34 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I41198531 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Nanjing University of Posts and Telecommunications |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yanling Shi |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | College of Telecommunications & Information Engineering Nanjing University of Posts and Telecommunications Nanjing 210003, China |
| authorships[1].author.id | https://openalex.org/A5030030145 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Xie Xiaoyan |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I41198531 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Telecommunications & Information Engineering Nanjing University of Posts and Telecommunications Nanjing 210003, China |
| authorships[1].institutions[0].id | https://openalex.org/I41198531 |
| authorships[1].institutions[0].ror | https://ror.org/043bpky34 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I41198531 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Nanjing University of Posts and Telecommunications |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Xiaoyan Xie |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Telecommunications & Information Engineering Nanjing University of Posts and Telecommunications Nanjing 210003, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://download.atlantis-press.com/article/25840639.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Adaptive Diagonal Loading Covariance Matrix Estimator in Spatially Heterogeneous Sea Clutter |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10891 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Radar Systems and Signal Processing |
| related_works | https://openalex.org/W2130674020, https://openalex.org/W2093748878, https://openalex.org/W2369680611, https://openalex.org/W2045728981, https://openalex.org/W1532932657, https://openalex.org/W3018194276, https://openalex.org/W2047066277, https://openalex.org/W1489099099, https://openalex.org/W2886934452, https://openalex.org/W1974955043 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2991/iwmecs-15.2015.93 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://download.atlantis-press.com/article/25840639.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 2015 2nd International Workshop on Materials Engineering and Computer Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.2991/iwmecs-15.2015.93 |
| primary_location.id | doi:10.2991/iwmecs-15.2015.93 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://download.atlantis-press.com/article/25840639.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 2015 2nd International Workshop on Materials Engineering and Computer Sciences |
| primary_location.landing_page_url | https://doi.org/10.2991/iwmecs-15.2015.93 |
| publication_date | 2015-01-01 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W2126568557, https://openalex.org/W2080824149, https://openalex.org/W2037521696, https://openalex.org/W2166728254, https://openalex.org/W2127283608, https://openalex.org/W2115458638 |
| referenced_works_count | 6 |
| abstract_inverted_index.a | 53, 70 |
| abstract_inverted_index.3m | 121 |
| abstract_inverted_index.as | 116, 118 |
| abstract_inverted_index.by | 12, 92 |
| abstract_inverted_index.in | 88, 109, 120 |
| abstract_inverted_index.is | 15, 40, 65, 69, 101 |
| abstract_inverted_index.of | 9, 47, 77 |
| abstract_inverted_index.on | 34, 50, 60 |
| abstract_inverted_index.or | 31, 36 |
| abstract_inverted_index.to | 4, 44, 72, 83, 103 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 105 |
| abstract_inverted_index.get | 45 |
| abstract_inverted_index.not | 32, 37 |
| abstract_inverted_index.rid | 46 |
| abstract_inverted_index.sea | 10, 38, 90, 113 |
| abstract_inverted_index.the | 6, 16, 25, 48, 74, 85, 98, 106 |
| abstract_inverted_index.15dB | 119 |
| abstract_inverted_index.high | 117 |
| abstract_inverted_index.most | 1 |
| abstract_inverted_index.real | 89 |
| abstract_inverted_index.same | 26 |
| abstract_inverted_index.show | 81 |
| abstract_inverted_index.with | 24 |
| abstract_inverted_index.based | 59 |
| abstract_inverted_index.novel | 54 |
| abstract_inverted_index.order | 43 |
| abstract_inverted_index.range | 111, 122 |
| abstract_inverted_index.ratio | 95 |
| abstract_inverted_index.that, | 82 |
| abstract_inverted_index.(SCM), | 20 |
| abstract_inverted_index.detect | 84 |
| abstract_inverted_index.factor | 71 |
| abstract_inverted_index.matrix | 8, 19, 56 |
| abstract_inverted_index.method | 3 |
| abstract_inverted_index.robust | 102 |
| abstract_inverted_index.sample | 17 |
| abstract_inverted_index.(GLRT), | 97 |
| abstract_inverted_index.clutter | 11, 39, 91 |
| abstract_inverted_index.depends | 33 |
| abstract_inverted_index.jamming | 104 |
| abstract_inverted_index.loading | 63, 67 |
| abstract_inverted_index.measure | 73 |
| abstract_inverted_index.results | 80 |
| abstract_inverted_index.samples | 14, 23 |
| abstract_inverted_index.targets | 87 |
| abstract_inverted_index.typical | 2 |
| abstract_inverted_index.whether | 35 |
| abstract_inverted_index.adaptive | 61 |
| abstract_inverted_index.clutter, | 114 |
| abstract_inverted_index.detector | 96 |
| abstract_inverted_index.diagonal | 62 |
| abstract_inverted_index.estimate | 5 |
| abstract_inverted_index.implying | 21 |
| abstract_inverted_index.improves | 108 |
| abstract_inverted_index.proposed | 99 |
| abstract_inverted_index.samples, | 52 |
| abstract_inverted_index.algorithm | 58 |
| abstract_inverted_index.different | 110 |
| abstract_inverted_index.estimator | 100 |
| abstract_inverted_index.secondary | 13, 22, 51, 78 |
| abstract_inverted_index.spatially | 41 |
| abstract_inverted_index.technique | 64 |
| abstract_inverted_index.covariance | 7, 18, 55 |
| abstract_inverted_index.especially | 115 |
| abstract_inverted_index.estimation | 57 |
| abstract_inverted_index.hypothesis | 29, 49 |
| abstract_inverted_index.likelihood | 94 |
| abstract_inverted_index.resolution | 112 |
| abstract_inverted_index.coefficient | 68 |
| abstract_inverted_index.consistency | 76 |
| abstract_inverted_index.distributed | 86 |
| abstract_inverted_index.established | 30 |
| abstract_inverted_index.generalized | 93 |
| abstract_inverted_index.performance | 107 |
| abstract_inverted_index.resolution. | 123 |
| abstract_inverted_index.statistical | 27, 75 |
| abstract_inverted_index.property.The | 28 |
| abstract_inverted_index.presented.The | 66 |
| abstract_inverted_index.homogeneous.In | 42 |
| abstract_inverted_index.samples.Experimental | 79 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5100983851 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I41198531 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/14 |
| sustainable_development_goals[0].score | 0.8799999952316284 |
| sustainable_development_goals[0].display_name | Life below water |
| citation_normalized_percentile.value | 0.06077734 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |