An Advanced Spectral–Spatial Classification Framework for Hyperspectral Imagery Based on DeepLab v3+ Article Swipe
Yifan Si
,
Dawei Gong
,
Yang Guo
,
Xinhua Zhu
,
Qiangsheng Huang
,
Julian Evans
,
Sailing He
,
Yaoran Sun
·
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/app11125703
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/app11125703
DeepLab v3+ neural network shows excellent performance in semantic segmentation. In this paper, we proposed a segmentation framework based on DeepLab v3+ neural network and applied it to the problem of hyperspectral imagery classification (HSIC). The dimensionality reduction of the hyperspectral image is performed using principal component analysis (PCA). DeepLab v3+ is used to extract spatial features, and those are fused with spectral features. A support vector machine (SVM) classifier is used for fitting and classification. Experimental results show that the framework proposed in this paper outperforms most traditional machine learning algorithms and deep-learning algorithms in hyperspectral imagery classification tasks.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/app11125703
- https://www.mdpi.com/2076-3417/11/12/5703/pdf?version=1624108026
- OA Status
- gold
- Cited By
- 15
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3176635885
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3176635885Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app11125703Digital Object Identifier
- Title
-
An Advanced Spectral–Spatial Classification Framework for Hyperspectral Imagery Based on DeepLab v3+Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-06-19Full publication date if available
- Authors
-
Yifan Si, Dawei Gong, Yang Guo, Xinhua Zhu, Qiangsheng Huang, Julian Evans, Sailing He, Yaoran SunList of authors in order
- Landing page
-
https://doi.org/10.3390/app11125703Publisher landing page
- PDF URL
-
https://www.mdpi.com/2076-3417/11/12/5703/pdf?version=1624108026Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2076-3417/11/12/5703/pdf?version=1624108026Direct OA link when available
- Concepts
-
Hyperspectral imaging, Computer science, Artificial intelligence, Pattern recognition (psychology), Principal component analysis, Dimensionality reduction, Artificial neural network, Classifier (UML), Support vector machine, Curse of dimensionality, Segmentation, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
15Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 5, 2023: 3, 2022: 2, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3176635885 |
|---|---|
| doi | https://doi.org/10.3390/app11125703 |
| ids.doi | https://doi.org/10.3390/app11125703 |
| ids.mag | 3176635885 |
| ids.openalex | https://openalex.org/W3176635885 |
| fwci | 1.69152354 |
| type | article |
| title | An Advanced Spectral–Spatial Classification Framework for Hyperspectral Imagery Based on DeepLab v3+ |
| biblio.issue | 12 |
| biblio.volume | 11 |
| biblio.last_page | 5703 |
| biblio.first_page | 5703 |
| topics[0].id | https://openalex.org/T10689 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Remote-Sensing Image Classification |
| topics[1].id | https://openalex.org/T13890 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9909999966621399 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1902 |
| topics[1].subfield.display_name | Atmospheric Science |
| topics[1].display_name | Remote Sensing and Land Use |
| topics[2].id | https://openalex.org/T10057 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9765999913215637 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Face and Expression Recognition |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C159078339 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7891449928283691 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q959005 |
| concepts[0].display_name | Hyperspectral imaging |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7223132252693176 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7024329900741577 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6623969078063965 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C27438332 |
| concepts[4].level | 2 |
| concepts[4].score | 0.627841591835022 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2873 |
| concepts[4].display_name | Principal component analysis |
| concepts[5].id | https://openalex.org/C70518039 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6098441481590271 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q16000077 |
| concepts[5].display_name | Dimensionality reduction |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5841657519340515 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C95623464 |
| concepts[7].level | 2 |
| concepts[7].score | 0.552779495716095 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[7].display_name | Classifier (UML) |
| concepts[8].id | https://openalex.org/C12267149 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5342010259628296 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[8].display_name | Support vector machine |
| concepts[9].id | https://openalex.org/C111030470 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4557974934577942 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1430460 |
| concepts[9].display_name | Curse of dimensionality |
| concepts[10].id | https://openalex.org/C89600930 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41873475909233093 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[10].display_name | Segmentation |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.34196096658706665 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/hyperspectral-imaging |
| keywords[0].score | 0.7891449928283691 |
| keywords[0].display_name | Hyperspectral imaging |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7223132252693176 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7024329900741577 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.6623969078063965 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/principal-component-analysis |
| keywords[4].score | 0.627841591835022 |
| keywords[4].display_name | Principal component analysis |
| keywords[5].id | https://openalex.org/keywords/dimensionality-reduction |
| keywords[5].score | 0.6098441481590271 |
| keywords[5].display_name | Dimensionality reduction |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.5841657519340515 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/classifier |
| keywords[7].score | 0.552779495716095 |
| keywords[7].display_name | Classifier (UML) |
| keywords[8].id | https://openalex.org/keywords/support-vector-machine |
| keywords[8].score | 0.5342010259628296 |
| keywords[8].display_name | Support vector machine |
| keywords[9].id | https://openalex.org/keywords/curse-of-dimensionality |
| keywords[9].score | 0.4557974934577942 |
| keywords[9].display_name | Curse of dimensionality |
| keywords[10].id | https://openalex.org/keywords/segmentation |
| keywords[10].score | 0.41873475909233093 |
| keywords[10].display_name | Segmentation |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.34196096658706665 |
| keywords[11].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.3390/app11125703 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2076-3417/11/12/5703/pdf?version=1624108026 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app11125703 |
| locations[1].id | pmh:oai:doaj.org/article:73aa45f496814eeaab440eed7984288e |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences, Vol 11, Iss 12, p 5703 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/73aa45f496814eeaab440eed7984288e |
| locations[2].id | pmh:oai:mdpi.com:/2076-3417/11/12/5703/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Applied Sciences; Volume 11; Issue 12; Pages: 5703 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/app11125703 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5102865101 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0588-870X |
| authorships[0].author.display_name | Yifan Si |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[0].affiliations[0].raw_affiliation_string | National Engineering Research Center for Optical Instruments, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China |
| authorships[0].institutions[0].id | https://openalex.org/I76130692 |
| authorships[0].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Zhejiang University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yifan Si |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | National Engineering Research Center for Optical Instruments, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China |
| authorships[1].author.id | https://openalex.org/A5110579754 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Dawei Gong |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[1].affiliations[0].raw_affiliation_string | National Engineering Research Center for Optical Instruments, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China |
| authorships[1].institutions[0].id | https://openalex.org/I76130692 |
| authorships[1].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Zhejiang University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dawei Gong |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | National Engineering Research Center for Optical Instruments, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China |
| authorships[2].author.id | https://openalex.org/A5101598725 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9837-0311 |
| authorships[2].author.display_name | Yang Guo |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I109935558, https://openalex.org/I76130692 |
| authorships[2].affiliations[0].raw_affiliation_string | Ningbo Research Institute, Zhejiang University, Ningbo 315100, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I76130692 |
| authorships[2].affiliations[1].raw_affiliation_string | National Engineering Research Center for Optical Instruments, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China |
| authorships[2].institutions[0].id | https://openalex.org/I109935558 |
| authorships[2].institutions[0].ror | https://ror.org/03et85d35 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I109935558 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Ningbo University |
| authorships[2].institutions[1].id | https://openalex.org/I76130692 |
| authorships[2].institutions[1].ror | https://ror.org/00a2xv884 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I76130692 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Zhejiang University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yang Guo |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National Engineering Research Center for Optical Instruments, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China, Ningbo Research Institute, Zhejiang University, Ningbo 315100, China |
| authorships[3].author.id | https://openalex.org/A5079784307 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9576-7690 |
| authorships[3].author.display_name | Xinhua Zhu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I76130692, https://openalex.org/I82760581 |
| authorships[3].affiliations[0].raw_affiliation_string | Research Institute of Zhejiang University-Taizhou, Taizhou 318000, China |
| authorships[3].institutions[0].id | https://openalex.org/I82760581 |
| authorships[3].institutions[0].ror | https://ror.org/04fzhyx73 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I82760581 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Taizhou University |
| authorships[3].institutions[1].id | https://openalex.org/I76130692 |
| authorships[3].institutions[1].ror | https://ror.org/00a2xv884 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I76130692 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Zhejiang University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xinhua Zhu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Research Institute of Zhejiang University-Taizhou, Taizhou 318000, China |
| authorships[4].author.id | https://openalex.org/A5109842223 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Qiangsheng Huang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[4].affiliations[0].raw_affiliation_string | National Engineering Research Center for Optical Instruments, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China |
| authorships[4].institutions[0].id | https://openalex.org/I76130692 |
| authorships[4].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Zhejiang University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Qiangsheng Huang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | National Engineering Research Center for Optical Instruments, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China |
| authorships[5].author.id | https://openalex.org/A5019395171 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4937-0582 |
| authorships[5].author.display_name | Julian Evans |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[5].affiliations[0].raw_affiliation_string | National Engineering Research Center for Optical Instruments, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China |
| authorships[5].institutions[0].id | https://openalex.org/I76130692 |
| authorships[5].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Zhejiang University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Julian Evans |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | National Engineering Research Center for Optical Instruments, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China |
| authorships[6].author.id | https://openalex.org/A5049549826 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-3401-1125 |
| authorships[6].author.display_name | Sailing He |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[6].affiliations[0].raw_affiliation_string | National Engineering Research Center for Optical Instruments, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I109935558, https://openalex.org/I76130692 |
| authorships[6].affiliations[1].raw_affiliation_string | Ningbo Research Institute, Zhejiang University, Ningbo 315100, China |
| authorships[6].institutions[0].id | https://openalex.org/I109935558 |
| authorships[6].institutions[0].ror | https://ror.org/03et85d35 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I109935558 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Ningbo University |
| authorships[6].institutions[1].id | https://openalex.org/I76130692 |
| authorships[6].institutions[1].ror | https://ror.org/00a2xv884 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I76130692 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | Zhejiang University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Sailing He |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | National Engineering Research Center for Optical Instruments, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China, Ningbo Research Institute, Zhejiang University, Ningbo 315100, China |
| authorships[7].author.id | https://openalex.org/A5056098993 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-2251-7102 |
| authorships[7].author.display_name | Yaoran Sun |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[7].affiliations[0].raw_affiliation_string | National Engineering Research Center for Optical Instruments, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China |
| authorships[7].institutions[0].id | https://openalex.org/I76130692 |
| authorships[7].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Zhejiang University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Yaoran Sun |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | National Engineering Research Center for Optical Instruments, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2076-3417/11/12/5703/pdf?version=1624108026 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Advanced Spectral–Spatial Classification Framework for Hyperspectral Imagery Based on DeepLab v3+ |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10689 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Remote-Sensing Image Classification |
| related_works | https://openalex.org/W2579148721, https://openalex.org/W4387893611, https://openalex.org/W2347335694, https://openalex.org/W2091056927, https://openalex.org/W2067407580, https://openalex.org/W4317486777, https://openalex.org/W4389669152, https://openalex.org/W2038514069, https://openalex.org/W2132083814, https://openalex.org/W1967233468 |
| cited_by_count | 15 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/app11125703 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2076-3417/11/12/5703/pdf?version=1624108026 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app11125703 |
| primary_location.id | doi:10.3390/app11125703 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2076-3417/11/12/5703/pdf?version=1624108026 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app11125703 |
| publication_date | 2021-06-19 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2117741752, https://openalex.org/W2004104348, https://openalex.org/W6678988053, https://openalex.org/W2093402979, https://openalex.org/W6682755970, https://openalex.org/W2500751094, https://openalex.org/W2572303978, https://openalex.org/W2154240401, https://openalex.org/W2003131921, https://openalex.org/W2166923144, https://openalex.org/W3042203856, https://openalex.org/W3120509585, https://openalex.org/W2997242762, https://openalex.org/W2029316659, https://openalex.org/W1903029394, https://openalex.org/W2784118841, https://openalex.org/W6748481559, https://openalex.org/W2286929393, https://openalex.org/W2109255472, https://openalex.org/W2894561647, https://openalex.org/W3210388655, https://openalex.org/W2127612938, https://openalex.org/W2395611524, https://openalex.org/W2964309882, https://openalex.org/W2156718197 |
| referenced_works_count | 25 |
| abstract_inverted_index.A | 64 |
| abstract_inverted_index.a | 15 |
| abstract_inverted_index.In | 10 |
| abstract_inverted_index.in | 7, 83, 95 |
| abstract_inverted_index.is | 42, 51, 70 |
| abstract_inverted_index.it | 26 |
| abstract_inverted_index.of | 30, 38 |
| abstract_inverted_index.on | 19 |
| abstract_inverted_index.to | 27, 53 |
| abstract_inverted_index.we | 13 |
| abstract_inverted_index.The | 35 |
| abstract_inverted_index.and | 24, 57, 74, 92 |
| abstract_inverted_index.are | 59 |
| abstract_inverted_index.for | 72 |
| abstract_inverted_index.the | 28, 39, 80 |
| abstract_inverted_index.v3+ | 1, 21, 50 |
| abstract_inverted_index.most | 87 |
| abstract_inverted_index.show | 78 |
| abstract_inverted_index.that | 79 |
| abstract_inverted_index.this | 11, 84 |
| abstract_inverted_index.used | 52, 71 |
| abstract_inverted_index.with | 61 |
| abstract_inverted_index.(SVM) | 68 |
| abstract_inverted_index.based | 18 |
| abstract_inverted_index.fused | 60 |
| abstract_inverted_index.image | 41 |
| abstract_inverted_index.paper | 85 |
| abstract_inverted_index.shows | 4 |
| abstract_inverted_index.those | 58 |
| abstract_inverted_index.using | 44 |
| abstract_inverted_index.(PCA). | 48 |
| abstract_inverted_index.neural | 2, 22 |
| abstract_inverted_index.paper, | 12 |
| abstract_inverted_index.tasks. | 99 |
| abstract_inverted_index.vector | 66 |
| abstract_inverted_index.(HSIC). | 34 |
| abstract_inverted_index.DeepLab | 0, 20, 49 |
| abstract_inverted_index.applied | 25 |
| abstract_inverted_index.extract | 54 |
| abstract_inverted_index.fitting | 73 |
| abstract_inverted_index.imagery | 32, 97 |
| abstract_inverted_index.machine | 67, 89 |
| abstract_inverted_index.network | 3, 23 |
| abstract_inverted_index.problem | 29 |
| abstract_inverted_index.results | 77 |
| abstract_inverted_index.spatial | 55 |
| abstract_inverted_index.support | 65 |
| abstract_inverted_index.analysis | 47 |
| abstract_inverted_index.learning | 90 |
| abstract_inverted_index.proposed | 14, 82 |
| abstract_inverted_index.semantic | 8 |
| abstract_inverted_index.spectral | 62 |
| abstract_inverted_index.component | 46 |
| abstract_inverted_index.excellent | 5 |
| abstract_inverted_index.features, | 56 |
| abstract_inverted_index.features. | 63 |
| abstract_inverted_index.framework | 17, 81 |
| abstract_inverted_index.performed | 43 |
| abstract_inverted_index.principal | 45 |
| abstract_inverted_index.reduction | 37 |
| abstract_inverted_index.algorithms | 91, 94 |
| abstract_inverted_index.classifier | 69 |
| abstract_inverted_index.outperforms | 86 |
| abstract_inverted_index.performance | 6 |
| abstract_inverted_index.traditional | 88 |
| abstract_inverted_index.Experimental | 76 |
| abstract_inverted_index.segmentation | 16 |
| abstract_inverted_index.deep-learning | 93 |
| abstract_inverted_index.hyperspectral | 31, 40, 96 |
| abstract_inverted_index.segmentation. | 9 |
| abstract_inverted_index.classification | 33, 98 |
| abstract_inverted_index.dimensionality | 36 |
| abstract_inverted_index.classification. | 75 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5056098993, https://openalex.org/A5049549826 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I109935558, https://openalex.org/I76130692 |
| citation_normalized_percentile.value | 0.85354368 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |