An approach based on gamma-ray transmission technique and artificial neural network for accurately measuring the thickness of various materials Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.2298/ntrp2402098t
This paper presents an approach based on the gamma-ray transmission technique and artificial neural network for accurately measuring the thickness of various materials in flat sheet form. The gamma-ray transmission system comprises a NaI(Tl) scintillation detector coupled with a 137Cs radioactive source. The artificial neural network model predicts the sample thickness through three input features: mass density, linear attenuation coefficient, and ln(R) - where R represents the ratio of areas under the 662 keV peak in spectra acquired from measurements with and without the sample. The artificial neural network model was trained using simulation data generated by MCNP6 code, facilitating the creation of comprehensive datasets covering diverse material types and thickness variations at a low cost. Hyperparameters of the artificial neural network model were defined by several optimization methods, such as hyperband-bayesian, tree-structured Parzen estimator, and random search, to establish an optimal artificial neural network architecture. Subsequently, the optimal artificial neural network model was deployed to predict the thickness of graphite, aluminum, copper, steel, and polymethyl methacrylate sheets, using input data obtained from the experiments. The results showed a good agreement between predicted and reference thicknesses, with a maximum relative deviation of 1.94 % and an average relative deviation of 0.52%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2298/ntrp2402098t
- OA Status
- gold
- Cited By
- 4
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404145586
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404145586Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2298/ntrp2402098tDigital Object Identifier
- Title
-
An approach based on gamma-ray transmission technique and artificial neural network for accurately measuring the thickness of various materialsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Le Thi Ngoc Trang, Nguyễn Thị Trúc Linh, Trần Thiện Thanh, Hoàng Đức Tâm, Huỳnh Đình ChươngList of authors in order
- Landing page
-
https://doi.org/10.2298/ntrp2402098tPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2298/ntrp2402098tDirect OA link when available
- Concepts
-
Artificial neural network, Transmission (telecommunications), Computer science, Materials science, Biological system, Artificial intelligence, Telecommunications, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404145586 |
|---|---|
| doi | https://doi.org/10.2298/ntrp2402098t |
| ids.doi | https://doi.org/10.2298/ntrp2402098t |
| ids.openalex | https://openalex.org/W4404145586 |
| fwci | 1.47010385 |
| type | article |
| title | An approach based on gamma-ray transmission technique and artificial neural network for accurately measuring the thickness of various materials |
| biblio.issue | 2 |
| biblio.volume | 39 |
| biblio.last_page | 110 |
| biblio.first_page | 98 |
| topics[0].id | https://openalex.org/T12386 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9957000017166138 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Advanced X-ray and CT Imaging |
| topics[1].id | https://openalex.org/T12169 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9937999844551086 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Non-Destructive Testing Techniques |
| topics[2].id | https://openalex.org/T11949 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9879000186920166 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3108 |
| topics[2].subfield.display_name | Radiation |
| topics[2].display_name | Nuclear Physics and Applications |
| is_xpac | False |
| apc_list.value | 150 |
| apc_list.currency | EUR |
| apc_list.value_usd | 161 |
| apc_paid.value | 150 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 161 |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7671247124671936 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C761482 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5325813293457031 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q118093 |
| concepts[1].display_name | Transmission (telecommunications) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4315502643585205 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C192562407 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4135553240776062 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[3].display_name | Materials science |
| concepts[4].id | https://openalex.org/C186060115 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4025384485721588 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q30336093 |
| concepts[4].display_name | Biological system |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.40150973200798035 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C76155785 |
| concepts[6].level | 1 |
| concepts[6].score | 0.09121066331863403 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[6].display_name | Telecommunications |
| concepts[7].id | https://openalex.org/C86803240 |
| concepts[7].level | 0 |
| concepts[7].score | 0.05198180675506592 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[7].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.7671247124671936 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/transmission |
| keywords[1].score | 0.5325813293457031 |
| keywords[1].display_name | Transmission (telecommunications) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4315502643585205 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/materials-science |
| keywords[3].score | 0.4135553240776062 |
| keywords[3].display_name | Materials science |
| keywords[4].id | https://openalex.org/keywords/biological-system |
| keywords[4].score | 0.4025384485721588 |
| keywords[4].display_name | Biological system |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.40150973200798035 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/telecommunications |
| keywords[6].score | 0.09121066331863403 |
| keywords[6].display_name | Telecommunications |
| keywords[7].id | https://openalex.org/keywords/biology |
| keywords[7].score | 0.05198180675506592 |
| keywords[7].display_name | Biology |
| language | en |
| locations[0].id | doi:10.2298/ntrp2402098t |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210232281 |
| locations[0].source.issn | 1451-3994, 1452-8185 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1451-3994 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Nuclear Technology and Radiation Protection |
| locations[0].source.host_organization | https://openalex.org/P4310322021 |
| locations[0].source.host_organization_name | Vinča Institute of Nuclear Sciences |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310322021 |
| locations[0].source.host_organization_lineage_names | Vinča Institute of Nuclear Sciences |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Nuclear Technology and Radiation Protection |
| locations[0].landing_page_url | https://doi.org/10.2298/ntrp2402098t |
| locations[1].id | pmh:oai:doaj.org/article:d522c9d8aad244069a6fcecd509c011a |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Nuclear Technology and Radiation Protection, Vol 39, Iss 2, Pp 98-110 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/d522c9d8aad244069a6fcecd509c011a |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5065753604 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9354-022X |
| authorships[0].author.display_name | Le Thi Ngoc Trang |
| authorships[0].countries | VN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I123565023 |
| authorships[0].affiliations[0].raw_affiliation_string | Nuclear Technique Laboratory, University of Science, Ho Chi Minh City, Vietnam + Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City, Vietnam + Vietnam National University, Ho Chi Minh City, Vietnam |
| authorships[0].institutions[0].id | https://openalex.org/I123565023 |
| authorships[0].institutions[0].ror | https://ror.org/00waaqh38 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I123565023 |
| authorships[0].institutions[0].country_code | VN |
| authorships[0].institutions[0].display_name | Vietnam National University Ho Chi Minh City |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Le Trang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Nuclear Technique Laboratory, University of Science, Ho Chi Minh City, Vietnam + Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City, Vietnam + Vietnam National University, Ho Chi Minh City, Vietnam |
| authorships[1].author.id | https://openalex.org/A5006722482 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7706-8391 |
| authorships[1].author.display_name | Nguyễn Thị Trúc Linh |
| authorships[1].countries | VN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I123565023 |
| authorships[1].affiliations[0].raw_affiliation_string | Nuclear Technique Laboratory, University of Science, Ho Chi Minh City, Vietnam + Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City, Vietnam + Vietnam National University, Ho Chi Minh City, Vietnam |
| authorships[1].institutions[0].id | https://openalex.org/I123565023 |
| authorships[1].institutions[0].ror | https://ror.org/00waaqh38 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I123565023 |
| authorships[1].institutions[0].country_code | VN |
| authorships[1].institutions[0].display_name | Vietnam National University Ho Chi Minh City |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nguyen Linh |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Nuclear Technique Laboratory, University of Science, Ho Chi Minh City, Vietnam + Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City, Vietnam + Vietnam National University, Ho Chi Minh City, Vietnam |
| authorships[2].author.id | https://openalex.org/A5084170589 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9866-4926 |
| authorships[2].author.display_name | Trần Thiện Thanh |
| authorships[2].countries | VN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I123565023 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City, Vietnam + Vietnam National University, Ho Chi Minh City, Vietnam |
| authorships[2].institutions[0].id | https://openalex.org/I123565023 |
| authorships[2].institutions[0].ror | https://ror.org/00waaqh38 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I123565023 |
| authorships[2].institutions[0].country_code | VN |
| authorships[2].institutions[0].display_name | Vietnam National University Ho Chi Minh City |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tran Thanh |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City, Vietnam + Vietnam National University, Ho Chi Minh City, Vietnam |
| authorships[3].author.id | https://openalex.org/A5051772809 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8880-8810 |
| authorships[3].author.display_name | Hoàng Đức Tâm |
| authorships[3].countries | VN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210104442 |
| authorships[3].affiliations[0].raw_affiliation_string | Faculty of Physics, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam |
| authorships[3].institutions[0].id | https://openalex.org/I4210104442 |
| authorships[3].institutions[0].ror | https://ror.org/01cs0jg44 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210104442 |
| authorships[3].institutions[0].country_code | VN |
| authorships[3].institutions[0].display_name | Ho Chi Minh City University of Education |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hoang Tam |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Faculty of Physics, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam |
| authorships[4].author.id | https://openalex.org/A5075673080 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3903-6388 |
| authorships[4].author.display_name | Huỳnh Đình Chương |
| authorships[4].countries | VN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I123565023 |
| authorships[4].affiliations[0].raw_affiliation_string | Nuclear Technique Laboratory, University of Science, Ho Chi Minh City, Vietnam + Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City, Vietnam + Vietnam National University, Ho Chi Minh City, Vietnam |
| authorships[4].institutions[0].id | https://openalex.org/I123565023 |
| authorships[4].institutions[0].ror | https://ror.org/00waaqh38 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I123565023 |
| authorships[4].institutions[0].country_code | VN |
| authorships[4].institutions[0].display_name | Vietnam National University Ho Chi Minh City |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Huynh Chuong |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Nuclear Technique Laboratory, University of Science, Ho Chi Minh City, Vietnam + Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City, Vietnam + Vietnam National University, Ho Chi Minh City, Vietnam |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2298/ntrp2402098t |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An approach based on gamma-ray transmission technique and artificial neural network for accurately measuring the thickness of various materials |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12386 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9957000017166138 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Advanced X-ray and CT Imaging |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2016187641, https://openalex.org/W2805339068, https://openalex.org/W4246450666, https://openalex.org/W4388998267, https://openalex.org/W2898370298, https://openalex.org/W2137437058, https://openalex.org/W4390401159, https://openalex.org/W2744391499, https://openalex.org/W1985010875 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.2298/ntrp2402098t |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210232281 |
| best_oa_location.source.issn | 1451-3994, 1452-8185 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1451-3994 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Nuclear Technology and Radiation Protection |
| best_oa_location.source.host_organization | https://openalex.org/P4310322021 |
| best_oa_location.source.host_organization_name | Vinča Institute of Nuclear Sciences |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310322021 |
| best_oa_location.source.host_organization_lineage_names | Vinča Institute of Nuclear Sciences |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Nuclear Technology and Radiation Protection |
| best_oa_location.landing_page_url | https://doi.org/10.2298/ntrp2402098t |
| primary_location.id | doi:10.2298/ntrp2402098t |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210232281 |
| primary_location.source.issn | 1451-3994, 1452-8185 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1451-3994 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Nuclear Technology and Radiation Protection |
| primary_location.source.host_organization | https://openalex.org/P4310322021 |
| primary_location.source.host_organization_name | Vinča Institute of Nuclear Sciences |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310322021 |
| primary_location.source.host_organization_lineage_names | Vinča Institute of Nuclear Sciences |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Nuclear Technology and Radiation Protection |
| primary_location.landing_page_url | https://doi.org/10.2298/ntrp2402098t |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2048246429, https://openalex.org/W4304014761, https://openalex.org/W4391781253, https://openalex.org/W2016832531, https://openalex.org/W2620807672, https://openalex.org/W2964175251, https://openalex.org/W2006181072, https://openalex.org/W3202668073, https://openalex.org/W4308040952, https://openalex.org/W4386812401, https://openalex.org/W2046323392, https://openalex.org/W2776930685, https://openalex.org/W3021733352, https://openalex.org/W2462425250, https://openalex.org/W2895561060, https://openalex.org/W2074888872, https://openalex.org/W4388817895, https://openalex.org/W2065241241, https://openalex.org/W2074442330, https://openalex.org/W2975033837, https://openalex.org/W3092029880, https://openalex.org/W4378620055, https://openalex.org/W3113125083, https://openalex.org/W4288773613 |
| referenced_works_count | 24 |
| abstract_inverted_index.% | 193 |
| abstract_inverted_index.- | 62 |
| abstract_inverted_index.R | 64 |
| abstract_inverted_index.a | 32, 38, 113, 178, 187 |
| abstract_inverted_index.an | 3, 140, 195 |
| abstract_inverted_index.as | 130 |
| abstract_inverted_index.at | 112 |
| abstract_inverted_index.by | 96, 125 |
| abstract_inverted_index.in | 23, 75 |
| abstract_inverted_index.of | 20, 68, 102, 117, 159, 191, 199 |
| abstract_inverted_index.on | 6 |
| abstract_inverted_index.to | 138, 155 |
| abstract_inverted_index.662 | 72 |
| abstract_inverted_index.The | 27, 42, 85, 175 |
| abstract_inverted_index.and | 11, 60, 81, 109, 135, 164, 183, 194 |
| abstract_inverted_index.for | 15 |
| abstract_inverted_index.keV | 73 |
| abstract_inverted_index.low | 114 |
| abstract_inverted_index.the | 7, 18, 48, 66, 71, 83, 100, 118, 147, 157, 173 |
| abstract_inverted_index.was | 90, 153 |
| abstract_inverted_index.1.94 | 192 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.data | 94, 170 |
| abstract_inverted_index.flat | 24 |
| abstract_inverted_index.from | 78, 172 |
| abstract_inverted_index.good | 179 |
| abstract_inverted_index.mass | 55 |
| abstract_inverted_index.peak | 74 |
| abstract_inverted_index.such | 129 |
| abstract_inverted_index.were | 123 |
| abstract_inverted_index.with | 37, 80, 186 |
| abstract_inverted_index.137Cs | 39 |
| abstract_inverted_index.MCNP6 | 97 |
| abstract_inverted_index.areas | 69 |
| abstract_inverted_index.based | 5 |
| abstract_inverted_index.code, | 98 |
| abstract_inverted_index.cost. | 115 |
| abstract_inverted_index.form. | 26 |
| abstract_inverted_index.input | 53, 169 |
| abstract_inverted_index.ln(R) | 61 |
| abstract_inverted_index.model | 46, 89, 122, 152 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.ratio | 67 |
| abstract_inverted_index.sheet | 25 |
| abstract_inverted_index.three | 52 |
| abstract_inverted_index.types | 108 |
| abstract_inverted_index.under | 70 |
| abstract_inverted_index.using | 92, 168 |
| abstract_inverted_index.where | 63 |
| abstract_inverted_index.0.52%. | 200 |
| abstract_inverted_index.Parzen | 133 |
| abstract_inverted_index.linear | 57 |
| abstract_inverted_index.neural | 13, 44, 87, 120, 143, 150 |
| abstract_inverted_index.random | 136 |
| abstract_inverted_index.sample | 49 |
| abstract_inverted_index.showed | 177 |
| abstract_inverted_index.steel, | 163 |
| abstract_inverted_index.system | 30 |
| abstract_inverted_index.NaI(Tl) | 33 |
| abstract_inverted_index.average | 196 |
| abstract_inverted_index.between | 181 |
| abstract_inverted_index.copper, | 162 |
| abstract_inverted_index.coupled | 36 |
| abstract_inverted_index.defined | 124 |
| abstract_inverted_index.diverse | 106 |
| abstract_inverted_index.maximum | 188 |
| abstract_inverted_index.network | 14, 45, 88, 121, 144, 151 |
| abstract_inverted_index.optimal | 141, 148 |
| abstract_inverted_index.predict | 156 |
| abstract_inverted_index.results | 176 |
| abstract_inverted_index.sample. | 84 |
| abstract_inverted_index.search, | 137 |
| abstract_inverted_index.several | 126 |
| abstract_inverted_index.sheets, | 167 |
| abstract_inverted_index.source. | 41 |
| abstract_inverted_index.spectra | 76 |
| abstract_inverted_index.through | 51 |
| abstract_inverted_index.trained | 91 |
| abstract_inverted_index.various | 21 |
| abstract_inverted_index.without | 82 |
| abstract_inverted_index.acquired | 77 |
| abstract_inverted_index.approach | 4 |
| abstract_inverted_index.covering | 105 |
| abstract_inverted_index.creation | 101 |
| abstract_inverted_index.datasets | 104 |
| abstract_inverted_index.density, | 56 |
| abstract_inverted_index.deployed | 154 |
| abstract_inverted_index.detector | 35 |
| abstract_inverted_index.material | 107 |
| abstract_inverted_index.methods, | 128 |
| abstract_inverted_index.obtained | 171 |
| abstract_inverted_index.predicts | 47 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.relative | 189, 197 |
| abstract_inverted_index.agreement | 180 |
| abstract_inverted_index.aluminum, | 161 |
| abstract_inverted_index.comprises | 31 |
| abstract_inverted_index.deviation | 190, 198 |
| abstract_inverted_index.establish | 139 |
| abstract_inverted_index.features: | 54 |
| abstract_inverted_index.gamma-ray | 8, 28 |
| abstract_inverted_index.generated | 95 |
| abstract_inverted_index.graphite, | 160 |
| abstract_inverted_index.materials | 22 |
| abstract_inverted_index.measuring | 17 |
| abstract_inverted_index.predicted | 182 |
| abstract_inverted_index.reference | 184 |
| abstract_inverted_index.technique | 10 |
| abstract_inverted_index.thickness | 19, 50, 110, 158 |
| abstract_inverted_index.accurately | 16 |
| abstract_inverted_index.artificial | 12, 43, 86, 119, 142, 149 |
| abstract_inverted_index.estimator, | 134 |
| abstract_inverted_index.polymethyl | 165 |
| abstract_inverted_index.represents | 65 |
| abstract_inverted_index.simulation | 93 |
| abstract_inverted_index.variations | 111 |
| abstract_inverted_index.attenuation | 58 |
| abstract_inverted_index.radioactive | 40 |
| abstract_inverted_index.coefficient, | 59 |
| abstract_inverted_index.experiments. | 174 |
| abstract_inverted_index.facilitating | 99 |
| abstract_inverted_index.measurements | 79 |
| abstract_inverted_index.methacrylate | 166 |
| abstract_inverted_index.optimization | 127 |
| abstract_inverted_index.thicknesses, | 185 |
| abstract_inverted_index.transmission | 9, 29 |
| abstract_inverted_index.Subsequently, | 146 |
| abstract_inverted_index.architecture. | 145 |
| abstract_inverted_index.comprehensive | 103 |
| abstract_inverted_index.scintillation | 34 |
| abstract_inverted_index.Hyperparameters | 116 |
| abstract_inverted_index.tree-structured | 132 |
| abstract_inverted_index.hyperband-bayesian, | 131 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.7518948 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |