An Artificial Neural Network (Ann) Model to Predict Failure Pressure of Pipelines Containing Axial Surface Cracks Article Swipe
Xinfang Zhang
,
Yong Li
,
Nader Yoosef‐Ghodsi
,
Juliana Y. Leung
,
Samer Adeeb
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.4750985
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.4750985
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.2139/ssrn.4750985
- OA Status
- green
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392566226
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392566226Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2139/ssrn.4750985Digital Object Identifier
- Title
-
An Artificial Neural Network (Ann) Model to Predict Failure Pressure of Pipelines Containing Axial Surface CracksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Xinfang Zhang, Yong Li, Nader Yoosef‐Ghodsi, Juliana Y. Leung, Samer AdeebList of authors in order
- Landing page
-
https://doi.org/10.2139/ssrn.4750985Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2139/ssrn.4750985Direct OA link when available
- Concepts
-
Artificial neural network, Pipeline transport, Engineering, Materials science, Artificial intelligence, Geology, Structural engineering, Computer science, Mechanical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392566226 |
|---|---|
| doi | https://doi.org/10.2139/ssrn.4750985 |
| ids.doi | https://doi.org/10.2139/ssrn.4750985 |
| ids.openalex | https://openalex.org/W4392566226 |
| fwci | 0.0 |
| type | preprint |
| title | An Artificial Neural Network (Ann) Model to Predict Failure Pressure of Pipelines Containing Axial Surface Cracks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12233 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Geotechnical Engineering and Underground Structures |
| topics[1].id | https://openalex.org/T12086 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9991000294685364 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Structural Integrity and Reliability Analysis |
| topics[2].id | https://openalex.org/T10396 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9980999827384949 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2211 |
| topics[2].subfield.display_name | Mechanics of Materials |
| topics[2].display_name | Fatigue and fracture mechanics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8148285150527954 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C175309249 |
| concepts[1].level | 2 |
| concepts[1].score | 0.551438570022583 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q725864 |
| concepts[1].display_name | Pipeline transport |
| concepts[2].id | https://openalex.org/C127413603 |
| concepts[2].level | 0 |
| concepts[2].score | 0.37750592827796936 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[2].display_name | Engineering |
| concepts[3].id | https://openalex.org/C192562407 |
| concepts[3].level | 0 |
| concepts[3].score | 0.33306586742401123 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[3].display_name | Materials science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.331360787153244 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C127313418 |
| concepts[5].level | 0 |
| concepts[5].score | 0.33060944080352783 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[5].display_name | Geology |
| concepts[6].id | https://openalex.org/C66938386 |
| concepts[6].level | 1 |
| concepts[6].score | 0.32148289680480957 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[6].display_name | Structural engineering |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.29619282484054565 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C78519656 |
| concepts[8].level | 1 |
| concepts[8].score | 0.1423170566558838 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[8].display_name | Mechanical engineering |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.8148285150527954 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/pipeline-transport |
| keywords[1].score | 0.551438570022583 |
| keywords[1].display_name | Pipeline transport |
| keywords[2].id | https://openalex.org/keywords/engineering |
| keywords[2].score | 0.37750592827796936 |
| keywords[2].display_name | Engineering |
| keywords[3].id | https://openalex.org/keywords/materials-science |
| keywords[3].score | 0.33306586742401123 |
| keywords[3].display_name | Materials science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.331360787153244 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/geology |
| keywords[5].score | 0.33060944080352783 |
| keywords[5].display_name | Geology |
| keywords[6].id | https://openalex.org/keywords/structural-engineering |
| keywords[6].score | 0.32148289680480957 |
| keywords[6].display_name | Structural engineering |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.29619282484054565 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/mechanical-engineering |
| keywords[8].score | 0.1423170566558838 |
| keywords[8].display_name | Mechanical engineering |
| language | en |
| locations[0].id | doi:10.2139/ssrn.4750985 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172589 |
| locations[0].source.issn | 1556-5068 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1556-5068 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SSRN Electronic Journal |
| locations[0].source.host_organization | https://openalex.org/I1318003438 |
| locations[0].source.host_organization_name | RELX Group (Netherlands) |
| locations[0].source.host_organization_lineage | https://openalex.org/I1318003438 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2139/ssrn.4750985 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100679226 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1912-5060 |
| authorships[0].author.display_name | Xinfang Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Xinfang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100695726 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6535-692X |
| authorships[1].author.display_name | Yong Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Yong |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5067778887 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Nader Yoosef‐Ghodsi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yoosef-Ghodsi, Nader |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5090525883 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7606-034X |
| authorships[3].author.display_name | Juliana Y. Leung |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Leung, Juliana Y. |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5085137473 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3750-2963 |
| authorships[4].author.display_name | Samer Adeeb |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Adeeb, Samer |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2139/ssrn.4750985 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Artificial Neural Network (Ann) Model to Predict Failure Pressure of Pipelines Containing Axial Surface Cracks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12233 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Geotechnical Engineering and Underground Structures |
| related_works | https://openalex.org/W2324615561, https://openalex.org/W2086120259, https://openalex.org/W2245170124, https://openalex.org/W2076393078, https://openalex.org/W3186982001, https://openalex.org/W1984402782, https://openalex.org/W2137941439, https://openalex.org/W2004200960, https://openalex.org/W1999891779, https://openalex.org/W2029513011 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2139/ssrn.4750985 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172589 |
| best_oa_location.source.issn | 1556-5068 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1556-5068 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | SSRN Electronic Journal |
| best_oa_location.source.host_organization | https://openalex.org/I1318003438 |
| best_oa_location.source.host_organization_name | RELX Group (Netherlands) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.2139/ssrn.4750985 |
| primary_location.id | doi:10.2139/ssrn.4750985 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172589 |
| primary_location.source.issn | 1556-5068 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1556-5068 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SSRN Electronic Journal |
| primary_location.source.host_organization | https://openalex.org/I1318003438 |
| primary_location.source.host_organization_name | RELX Group (Netherlands) |
| primary_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2139/ssrn.4750985 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W563346039, https://openalex.org/W2073099439, https://openalex.org/W4312787065, https://openalex.org/W6721217350, https://openalex.org/W2437823290, https://openalex.org/W5976198, https://openalex.org/W2070157903, https://openalex.org/W2075624976, https://openalex.org/W2020283292, https://openalex.org/W2900167574, https://openalex.org/W3157122066, https://openalex.org/W3094868428, https://openalex.org/W4391523084, https://openalex.org/W3021994315, https://openalex.org/W2990565814, https://openalex.org/W3091232902, https://openalex.org/W2620277952, https://openalex.org/W2996686940, https://openalex.org/W2092011174, https://openalex.org/W2165834163, https://openalex.org/W2023698373, https://openalex.org/W2010315761, https://openalex.org/W2117812871, https://openalex.org/W1971751545, https://openalex.org/W4251325898, https://openalex.org/W1980281115, https://openalex.org/W2475568207 |
| referenced_works_count | 27 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.03530574 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |