An artificial neural network-based system for detecting machine failures using tiny sound data: A case study Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2209.11527
In an effort to advocate the research for a deep learning-based machine failure detection system, we present a case study of our proposed system based on a tiny sound dataset. Our case study investigates a variational autoencoder (VAE) for augmenting a small drill sound dataset from Valmet AB. A Valmet dataset contains 134 sounds that have been divided into two categories: "Anomaly" and "Normal" recorded from a drilling machine in Valmet AB, a company in Sundsvall, Sweden that supplies equipment and processes for the production of biofuels. Using deep learning models to detect failure drills on such a small sound dataset is typically unsuccessful. We employed a VAE to increase the number of sounds in the tiny dataset by synthesizing new sounds from original sounds. The augmented dataset was created by combining these synthesized sounds with the original sounds. We used a high-pass filter with a passband frequency of 1000 Hz and a low-pass filter with a passband frequency of 22\kern 0.16667em000 Hz to pre-process sounds in the augmented dataset before transforming them to Mel spectrograms. The pre-trained 2D-CNN Alexnet was then trained using these Mel spectrograms. When compared to using the original tiny sound dataset to train pre-trained Alexnet, using the augmented sound dataset enhanced the CNN model's classification results by 6.62\%(94.12\% when trained on the augmented dataset versus 87.5\% when trained on the original dataset).
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2209.11527
- https://arxiv.org/pdf/2209.11527
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4297164524
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4297164524Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2209.11527Digital Object Identifier
- Title
-
An artificial neural network-based system for detecting machine failures using tiny sound data: A case studyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-09-23Full publication date if available
- Authors
-
Thanh Tran, Sebastian Bader, Jan T. LundgrenList of authors in order
- Landing page
-
https://arxiv.org/abs/2209.11527Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2209.11527Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2209.11527Direct OA link when available
- Concepts
-
Spectrogram, Computer science, Autoencoder, Artificial intelligence, Filter (signal processing), Artificial neural network, Convolutional neural network, Process (computing), Deep learning, Pattern recognition (psychology), Sound (geography), Speech recognition, Passband, Computer vision, Acoustics, Band-pass filter, Engineering, Electrical engineering, Physics, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4297164524 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2209.11527 |
| ids.doi | https://doi.org/10.48550/arxiv.2209.11527 |
| ids.openalex | https://openalex.org/W4297164524 |
| fwci | |
| type | preprint |
| title | An artificial neural network-based system for detecting machine failures using tiny sound data: A case study |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10892 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9743000268936157 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2212 |
| topics[0].subfield.display_name | Ocean Engineering |
| topics[0].display_name | Drilling and Well Engineering |
| topics[1].id | https://openalex.org/T12282 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9574999809265137 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Mineral Processing and Grinding |
| topics[2].id | https://openalex.org/T10220 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9480000138282776 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Machine Fault Diagnosis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C45273575 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7875874042510986 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q578970 |
| concepts[0].display_name | Spectrogram |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7544255256652832 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C101738243 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7266491651535034 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[2].display_name | Autoencoder |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6047203540802002 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C106131492 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5100787281990051 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[4].display_name | Filter (signal processing) |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48340097069740295 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C81363708 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4811179041862488 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[6].display_name | Convolutional neural network |
| concepts[7].id | https://openalex.org/C98045186 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4633078873157501 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[7].display_name | Process (computing) |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.44606298208236694 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4413619041442871 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C203718221 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42962777614593506 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q491713 |
| concepts[10].display_name | Sound (geography) |
| concepts[11].id | https://openalex.org/C28490314 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4257696270942688 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[11].display_name | Speech recognition |
| concepts[12].id | https://openalex.org/C46416853 |
| concepts[12].level | 3 |
| concepts[12].score | 0.4124118387699127 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q254758 |
| concepts[12].display_name | Passband |
| concepts[13].id | https://openalex.org/C31972630 |
| concepts[13].level | 1 |
| concepts[13].score | 0.22083303332328796 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[13].display_name | Computer vision |
| concepts[14].id | https://openalex.org/C24890656 |
| concepts[14].level | 1 |
| concepts[14].score | 0.2091759443283081 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[14].display_name | Acoustics |
| concepts[15].id | https://openalex.org/C147788027 |
| concepts[15].level | 2 |
| concepts[15].score | 0.17462489008903503 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2718101 |
| concepts[15].display_name | Band-pass filter |
| concepts[16].id | https://openalex.org/C127413603 |
| concepts[16].level | 0 |
| concepts[16].score | 0.10781493782997131 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[16].display_name | Engineering |
| concepts[17].id | https://openalex.org/C119599485 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[17].display_name | Electrical engineering |
| concepts[18].id | https://openalex.org/C121332964 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[18].display_name | Physics |
| concepts[19].id | https://openalex.org/C111919701 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[19].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/spectrogram |
| keywords[0].score | 0.7875874042510986 |
| keywords[0].display_name | Spectrogram |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7544255256652832 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/autoencoder |
| keywords[2].score | 0.7266491651535034 |
| keywords[2].display_name | Autoencoder |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6047203540802002 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/filter |
| keywords[4].score | 0.5100787281990051 |
| keywords[4].display_name | Filter (signal processing) |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.48340097069740295 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[6].score | 0.4811179041862488 |
| keywords[6].display_name | Convolutional neural network |
| keywords[7].id | https://openalex.org/keywords/process |
| keywords[7].score | 0.4633078873157501 |
| keywords[7].display_name | Process (computing) |
| keywords[8].id | https://openalex.org/keywords/deep-learning |
| keywords[8].score | 0.44606298208236694 |
| keywords[8].display_name | Deep learning |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.4413619041442871 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/sound |
| keywords[10].score | 0.42962777614593506 |
| keywords[10].display_name | Sound (geography) |
| keywords[11].id | https://openalex.org/keywords/speech-recognition |
| keywords[11].score | 0.4257696270942688 |
| keywords[11].display_name | Speech recognition |
| keywords[12].id | https://openalex.org/keywords/passband |
| keywords[12].score | 0.4124118387699127 |
| keywords[12].display_name | Passband |
| keywords[13].id | https://openalex.org/keywords/computer-vision |
| keywords[13].score | 0.22083303332328796 |
| keywords[13].display_name | Computer vision |
| keywords[14].id | https://openalex.org/keywords/acoustics |
| keywords[14].score | 0.2091759443283081 |
| keywords[14].display_name | Acoustics |
| keywords[15].id | https://openalex.org/keywords/band-pass-filter |
| keywords[15].score | 0.17462489008903503 |
| keywords[15].display_name | Band-pass filter |
| keywords[16].id | https://openalex.org/keywords/engineering |
| keywords[16].score | 0.10781493782997131 |
| keywords[16].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2209.11527 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2209.11527 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2209.11527 |
| locations[1].id | doi:10.48550/arxiv.2209.11527 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2209.11527 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5032785756 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8262-2414 |
| authorships[0].author.display_name | Thanh Tran |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tran, Thanh |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5074115481 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8786-6242 |
| authorships[1].author.display_name | Sebastian Bader |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bader, Sebastian |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5008520687 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jan T. Lundgren |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Lundgren, Jan |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2209.11527 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-09-27T00:00:00 |
| display_name | An artificial neural network-based system for detecting machine failures using tiny sound data: A case study |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10892 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9743000268936157 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2212 |
| primary_topic.subfield.display_name | Ocean Engineering |
| primary_topic.display_name | Drilling and Well Engineering |
| related_works | https://openalex.org/W2530685530, https://openalex.org/W4375868962, https://openalex.org/W2011227383, https://openalex.org/W3013693939, https://openalex.org/W2088854863, https://openalex.org/W2159052453, https://openalex.org/W2566616303, https://openalex.org/W3131327266, https://openalex.org/W2734887215, https://openalex.org/W3179495260 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2209.11527 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2209.11527 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2209.11527 |
| primary_location.id | pmh:oai:arXiv.org:2209.11527 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2209.11527 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2209.11527 |
| publication_date | 2022-09-23 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 48 |
| abstract_inverted_index.a | 8, 17, 26, 34, 40, 66, 72, 97, 106, 141, 145, 152, 156 |
| abstract_inverted_index.Hz | 150, 162 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.We | 104, 139 |
| abstract_inverted_index.an | 1 |
| abstract_inverted_index.by | 118, 130, 211 |
| abstract_inverted_index.in | 69, 74, 114, 166 |
| abstract_inverted_index.is | 101 |
| abstract_inverted_index.of | 20, 85, 112, 148, 159 |
| abstract_inverted_index.on | 25, 95, 215, 223 |
| abstract_inverted_index.to | 3, 91, 108, 163, 173, 189, 196 |
| abstract_inverted_index.we | 15 |
| abstract_inverted_index.134 | 52 |
| abstract_inverted_index.AB, | 71 |
| abstract_inverted_index.AB. | 47 |
| abstract_inverted_index.CNN | 207 |
| abstract_inverted_index.Mel | 174, 185 |
| abstract_inverted_index.Our | 30 |
| abstract_inverted_index.The | 125, 176 |
| abstract_inverted_index.VAE | 107 |
| abstract_inverted_index.and | 62, 80, 151 |
| abstract_inverted_index.for | 7, 38, 82 |
| abstract_inverted_index.new | 120 |
| abstract_inverted_index.our | 21 |
| abstract_inverted_index.the | 5, 83, 110, 115, 136, 167, 191, 201, 206, 216, 224 |
| abstract_inverted_index.two | 59 |
| abstract_inverted_index.was | 128, 180 |
| abstract_inverted_index.1000 | 149 |
| abstract_inverted_index.When | 187 |
| abstract_inverted_index.been | 56 |
| abstract_inverted_index.case | 18, 31 |
| abstract_inverted_index.deep | 9, 88 |
| abstract_inverted_index.from | 45, 65, 122 |
| abstract_inverted_index.have | 55 |
| abstract_inverted_index.into | 58 |
| abstract_inverted_index.such | 96 |
| abstract_inverted_index.that | 54, 77 |
| abstract_inverted_index.them | 172 |
| abstract_inverted_index.then | 181 |
| abstract_inverted_index.tiny | 27, 116, 193 |
| abstract_inverted_index.used | 140 |
| abstract_inverted_index.when | 213, 221 |
| abstract_inverted_index.with | 135, 144, 155 |
| abstract_inverted_index.(VAE) | 37 |
| abstract_inverted_index.Using | 87 |
| abstract_inverted_index.based | 24 |
| abstract_inverted_index.drill | 42 |
| abstract_inverted_index.small | 41, 98 |
| abstract_inverted_index.sound | 28, 43, 99, 194, 203 |
| abstract_inverted_index.study | 19, 32 |
| abstract_inverted_index.these | 132, 184 |
| abstract_inverted_index.train | 197 |
| abstract_inverted_index.using | 183, 190, 200 |
| abstract_inverted_index.2D-CNN | 178 |
| abstract_inverted_index.87.5\% | 220 |
| abstract_inverted_index.Sweden | 76 |
| abstract_inverted_index.Valmet | 46, 49, 70 |
| abstract_inverted_index.before | 170 |
| abstract_inverted_index.detect | 92 |
| abstract_inverted_index.drills | 94 |
| abstract_inverted_index.effort | 2 |
| abstract_inverted_index.filter | 143, 154 |
| abstract_inverted_index.models | 90 |
| abstract_inverted_index.number | 111 |
| abstract_inverted_index.sounds | 53, 113, 121, 134, 165 |
| abstract_inverted_index.system | 23 |
| abstract_inverted_index.versus | 219 |
| abstract_inverted_index.22\kern | 160 |
| abstract_inverted_index.Alexnet | 179 |
| abstract_inverted_index.company | 73 |
| abstract_inverted_index.created | 129 |
| abstract_inverted_index.dataset | 44, 50, 100, 117, 127, 169, 195, 204, 218 |
| abstract_inverted_index.divided | 57 |
| abstract_inverted_index.failure | 12, 93 |
| abstract_inverted_index.machine | 11, 68 |
| abstract_inverted_index.model's | 208 |
| abstract_inverted_index.present | 16 |
| abstract_inverted_index.results | 210 |
| abstract_inverted_index.sounds. | 124, 138 |
| abstract_inverted_index.system, | 14 |
| abstract_inverted_index.trained | 182, 214, 222 |
| abstract_inverted_index."Normal" | 63 |
| abstract_inverted_index.Alexnet, | 199 |
| abstract_inverted_index.advocate | 4 |
| abstract_inverted_index.compared | 188 |
| abstract_inverted_index.contains | 51 |
| abstract_inverted_index.dataset. | 29 |
| abstract_inverted_index.drilling | 67 |
| abstract_inverted_index.employed | 105 |
| abstract_inverted_index.enhanced | 205 |
| abstract_inverted_index.increase | 109 |
| abstract_inverted_index.learning | 89 |
| abstract_inverted_index.low-pass | 153 |
| abstract_inverted_index.original | 123, 137, 192, 225 |
| abstract_inverted_index.passband | 146, 157 |
| abstract_inverted_index.proposed | 22 |
| abstract_inverted_index.recorded | 64 |
| abstract_inverted_index.research | 6 |
| abstract_inverted_index.supplies | 78 |
| abstract_inverted_index."Anomaly" | 61 |
| abstract_inverted_index.augmented | 126, 168, 202, 217 |
| abstract_inverted_index.biofuels. | 86 |
| abstract_inverted_index.combining | 131 |
| abstract_inverted_index.dataset). | 226 |
| abstract_inverted_index.detection | 13 |
| abstract_inverted_index.equipment | 79 |
| abstract_inverted_index.frequency | 147, 158 |
| abstract_inverted_index.high-pass | 142 |
| abstract_inverted_index.processes | 81 |
| abstract_inverted_index.typically | 102 |
| abstract_inverted_index.Sundsvall, | 75 |
| abstract_inverted_index.augmenting | 39 |
| abstract_inverted_index.production | 84 |
| abstract_inverted_index.autoencoder | 36 |
| abstract_inverted_index.categories: | 60 |
| abstract_inverted_index.pre-process | 164 |
| abstract_inverted_index.pre-trained | 177, 198 |
| abstract_inverted_index.synthesized | 133 |
| abstract_inverted_index.variational | 35 |
| abstract_inverted_index.0.16667em000 | 161 |
| abstract_inverted_index.investigates | 33 |
| abstract_inverted_index.synthesizing | 119 |
| abstract_inverted_index.transforming | 171 |
| abstract_inverted_index.spectrograms. | 175, 186 |
| abstract_inverted_index.unsuccessful. | 103 |
| abstract_inverted_index.6.62\%(94.12\% | 212 |
| abstract_inverted_index.classification | 209 |
| abstract_inverted_index.learning-based | 10 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |