An Artificial Neural Network for Image Classification Inspired by Aversive Olfactory Learning Circuits in Caenorhabditis Elegans Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.07466
This study introduces an artificial neural network (ANN) for image classification task, inspired by the aversive olfactory learning circuits of the nematode Caenorhabditis elegans (C. elegans). Despite the remarkable performance of ANNs in a variety of tasks, they face challenges such as excessive parameterization, high training costs and limited generalization capabilities. C. elegans, with its simple nervous system comprising only 302 neurons, serves as a paradigm in neurobiological research and is capable of complex behaviors including learning. This research identifies key neural circuits associated with aversive olfactory learning in C. elegans through behavioral experiments and high-throughput gene sequencing, translating them into an image classification ANN architecture. Additionally, two other image classification ANNs with distinct architectures were constructed for comparative performance analysis to highlight the advantages of bio-inspired design. The results indicate that the ANN inspired by the aversive olfactory learning circuits of C. elegans achieves higher accuracy, better consistency and faster convergence rates in image classification task, especially when tackling more complex classification challenges. This study not only showcases the potential of bio-inspired design in enhancing ANN capabilities but also provides a novel perspective and methodology for future ANN design.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2409.07466
- https://arxiv.org/pdf/2409.07466
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403662750
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403662750Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2409.07466Digital Object Identifier
- Title
-
An Artificial Neural Network for Image Classification Inspired by Aversive Olfactory Learning Circuits in Caenorhabditis ElegansWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-28Full publication date if available
- Authors
-
Xuebin Wang, Chunxiuzi Liu, Meng Zhao, Ke Zhang, Zengru Di, He LiuList of authors in order
- Landing page
-
https://arxiv.org/abs/2409.07466Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2409.07466Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.07466Direct OA link when available
- Concepts
-
Caenorhabditis elegans, Artificial neural network, Artificial intelligence, Biological neural network, Computer science, Olfactory system, Neuroscience, Biology, Gene, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403662750 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2409.07466 |
| ids.doi | https://doi.org/10.48550/arxiv.2409.07466 |
| ids.openalex | https://openalex.org/W4403662750 |
| fwci | |
| type | preprint |
| title | An Artificial Neural Network for Image Classification Inspired by Aversive Olfactory Learning Circuits in Caenorhabditis Elegans |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14319 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.4756999909877777 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Currency Recognition and Detection |
| topics[1].id | https://openalex.org/T10320 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.4595000147819519 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Applications |
| topics[2].id | https://openalex.org/T10676 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.4392000138759613 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1302 |
| topics[2].subfield.display_name | Aging |
| topics[2].display_name | Genetics, Aging, and Longevity in Model Organisms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778944004 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7586421370506287 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q91703 |
| concepts[0].display_name | Caenorhabditis elegans |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6178382635116577 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5256867408752441 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C118403218 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5089328289031982 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q43283 |
| concepts[3].display_name | Biological neural network |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.48842349648475647 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C201792869 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45898234844207764 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1054094 |
| concepts[5].display_name | Olfactory system |
| concepts[6].id | https://openalex.org/C169760540 |
| concepts[6].level | 1 |
| concepts[6].score | 0.42589646577835083 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[6].display_name | Neuroscience |
| concepts[7].id | https://openalex.org/C86803240 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3458837866783142 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[7].display_name | Biology |
| concepts[8].id | https://openalex.org/C104317684 |
| concepts[8].level | 2 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[8].display_name | Gene |
| concepts[9].id | https://openalex.org/C55493867 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[9].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/caenorhabditis-elegans |
| keywords[0].score | 0.7586421370506287 |
| keywords[0].display_name | Caenorhabditis elegans |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.6178382635116577 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5256867408752441 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/biological-neural-network |
| keywords[3].score | 0.5089328289031982 |
| keywords[3].display_name | Biological neural network |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.48842349648475647 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/olfactory-system |
| keywords[5].score | 0.45898234844207764 |
| keywords[5].display_name | Olfactory system |
| keywords[6].id | https://openalex.org/keywords/neuroscience |
| keywords[6].score | 0.42589646577835083 |
| keywords[6].display_name | Neuroscience |
| keywords[7].id | https://openalex.org/keywords/biology |
| keywords[7].score | 0.3458837866783142 |
| keywords[7].display_name | Biology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2409.07466 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2409.07466 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2409.07466 |
| locations[1].id | doi:10.48550/arxiv.2409.07466 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2409.07466 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100709626 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4270-7330 |
| authorships[0].author.display_name | Xuebin Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Xuebin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5083979280 |
| authorships[1].author.orcid | https://orcid.org/0009-0004-9925-965X |
| authorships[1].author.display_name | Chunxiuzi Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liu, Chunxiuzi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5060818549 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0922-0996 |
| authorships[2].author.display_name | Meng Zhao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhao, Meng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100365765 |
| authorships[3].author.orcid | https://orcid.org/0009-0002-9053-4278 |
| authorships[3].author.display_name | Ke Zhang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhang, Ke |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5102710973 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5240-298X |
| authorships[4].author.display_name | Zengru Di |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Di, Zengru |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100317863 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4103-312X |
| authorships[5].author.display_name | He Liu |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Liu, He |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.07466 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-10-23T00:00:00 |
| display_name | An Artificial Neural Network for Image Classification Inspired by Aversive Olfactory Learning Circuits in Caenorhabditis Elegans |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T14319 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.4756999909877777 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Currency Recognition and Detection |
| related_works | https://openalex.org/W4391069438, https://openalex.org/W2043257604, https://openalex.org/W2159102463, https://openalex.org/W2042659370, https://openalex.org/W4229037364, https://openalex.org/W2574446178, https://openalex.org/W2615734739, https://openalex.org/W2131016140, https://openalex.org/W2071083432, https://openalex.org/W2962710423 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.07466 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.07466 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.07466 |
| primary_location.id | pmh:oai:arXiv.org:2409.07466 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2409.07466 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2409.07466 |
| publication_date | 2024-08-28 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 33, 64, 181 |
| abstract_inverted_index.C. | 51, 89, 142 |
| abstract_inverted_index.an | 3, 101 |
| abstract_inverted_index.as | 41, 63 |
| abstract_inverted_index.by | 13, 135 |
| abstract_inverted_index.in | 32, 66, 88, 153, 174 |
| abstract_inverted_index.is | 70 |
| abstract_inverted_index.of | 19, 30, 35, 72, 125, 141, 171 |
| abstract_inverted_index.to | 121 |
| abstract_inverted_index.(C. | 24 |
| abstract_inverted_index.302 | 60 |
| abstract_inverted_index.ANN | 104, 133, 176, 188 |
| abstract_inverted_index.The | 128 |
| abstract_inverted_index.and | 47, 69, 94, 149, 184 |
| abstract_inverted_index.but | 178 |
| abstract_inverted_index.for | 8, 117, 186 |
| abstract_inverted_index.its | 54 |
| abstract_inverted_index.key | 80 |
| abstract_inverted_index.not | 166 |
| abstract_inverted_index.the | 14, 20, 27, 123, 132, 136, 169 |
| abstract_inverted_index.two | 107 |
| abstract_inverted_index.ANNs | 31, 111 |
| abstract_inverted_index.This | 0, 77, 164 |
| abstract_inverted_index.also | 179 |
| abstract_inverted_index.face | 38 |
| abstract_inverted_index.gene | 96 |
| abstract_inverted_index.high | 44 |
| abstract_inverted_index.into | 100 |
| abstract_inverted_index.more | 160 |
| abstract_inverted_index.only | 59, 167 |
| abstract_inverted_index.such | 40 |
| abstract_inverted_index.that | 131 |
| abstract_inverted_index.them | 99 |
| abstract_inverted_index.they | 37 |
| abstract_inverted_index.were | 115 |
| abstract_inverted_index.when | 158 |
| abstract_inverted_index.with | 53, 84, 112 |
| abstract_inverted_index.(ANN) | 7 |
| abstract_inverted_index.costs | 46 |
| abstract_inverted_index.image | 9, 102, 109, 154 |
| abstract_inverted_index.novel | 182 |
| abstract_inverted_index.other | 108 |
| abstract_inverted_index.rates | 152 |
| abstract_inverted_index.study | 1, 165 |
| abstract_inverted_index.task, | 11, 156 |
| abstract_inverted_index.better | 147 |
| abstract_inverted_index.design | 173 |
| abstract_inverted_index.faster | 150 |
| abstract_inverted_index.future | 187 |
| abstract_inverted_index.higher | 145 |
| abstract_inverted_index.neural | 5, 81 |
| abstract_inverted_index.serves | 62 |
| abstract_inverted_index.simple | 55 |
| abstract_inverted_index.system | 57 |
| abstract_inverted_index.tasks, | 36 |
| abstract_inverted_index.Despite | 26 |
| abstract_inverted_index.capable | 71 |
| abstract_inverted_index.complex | 73, 161 |
| abstract_inverted_index.design. | 127, 189 |
| abstract_inverted_index.elegans | 23, 90, 143 |
| abstract_inverted_index.limited | 48 |
| abstract_inverted_index.nervous | 56 |
| abstract_inverted_index.network | 6 |
| abstract_inverted_index.results | 129 |
| abstract_inverted_index.through | 91 |
| abstract_inverted_index.variety | 34 |
| abstract_inverted_index.achieves | 144 |
| abstract_inverted_index.analysis | 120 |
| abstract_inverted_index.aversive | 15, 85, 137 |
| abstract_inverted_index.circuits | 18, 82, 140 |
| abstract_inverted_index.distinct | 113 |
| abstract_inverted_index.elegans, | 52 |
| abstract_inverted_index.indicate | 130 |
| abstract_inverted_index.inspired | 12, 134 |
| abstract_inverted_index.learning | 17, 87, 139 |
| abstract_inverted_index.nematode | 21 |
| abstract_inverted_index.neurons, | 61 |
| abstract_inverted_index.paradigm | 65 |
| abstract_inverted_index.provides | 180 |
| abstract_inverted_index.research | 68, 78 |
| abstract_inverted_index.tackling | 159 |
| abstract_inverted_index.training | 45 |
| abstract_inverted_index.accuracy, | 146 |
| abstract_inverted_index.behaviors | 74 |
| abstract_inverted_index.elegans). | 25 |
| abstract_inverted_index.enhancing | 175 |
| abstract_inverted_index.excessive | 42 |
| abstract_inverted_index.highlight | 122 |
| abstract_inverted_index.including | 75 |
| abstract_inverted_index.learning. | 76 |
| abstract_inverted_index.olfactory | 16, 86, 138 |
| abstract_inverted_index.potential | 170 |
| abstract_inverted_index.showcases | 168 |
| abstract_inverted_index.advantages | 124 |
| abstract_inverted_index.artificial | 4 |
| abstract_inverted_index.associated | 83 |
| abstract_inverted_index.behavioral | 92 |
| abstract_inverted_index.challenges | 39 |
| abstract_inverted_index.comprising | 58 |
| abstract_inverted_index.especially | 157 |
| abstract_inverted_index.identifies | 79 |
| abstract_inverted_index.introduces | 2 |
| abstract_inverted_index.remarkable | 28 |
| abstract_inverted_index.challenges. | 163 |
| abstract_inverted_index.comparative | 118 |
| abstract_inverted_index.consistency | 148 |
| abstract_inverted_index.constructed | 116 |
| abstract_inverted_index.convergence | 151 |
| abstract_inverted_index.experiments | 93 |
| abstract_inverted_index.methodology | 185 |
| abstract_inverted_index.performance | 29, 119 |
| abstract_inverted_index.perspective | 183 |
| abstract_inverted_index.sequencing, | 97 |
| abstract_inverted_index.translating | 98 |
| abstract_inverted_index.bio-inspired | 126, 172 |
| abstract_inverted_index.capabilities | 177 |
| abstract_inverted_index.Additionally, | 106 |
| abstract_inverted_index.architecture. | 105 |
| abstract_inverted_index.architectures | 114 |
| abstract_inverted_index.capabilities. | 50 |
| abstract_inverted_index.Caenorhabditis | 22 |
| abstract_inverted_index.classification | 10, 103, 110, 155, 162 |
| abstract_inverted_index.generalization | 49 |
| abstract_inverted_index.high-throughput | 95 |
| abstract_inverted_index.neurobiological | 67 |
| abstract_inverted_index.parameterization, | 43 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |