An Asymmetric Bound for Sum of Distance Sets Article Swipe
Daewoong Cheong
,
Doowon Koh
,
Thang Pham
·
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1134/s0081543821040131
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1134/s0081543821040131
For $ E\subset \mathbb{F}_q^d$, let $Δ(E)$ denote the distance set determined by pairs of points in $E$. By using additive energies of sets on a paraboloid, Koh, Pham, Shen, and Vinh (2020) proved that if $E,F\subset \mathbb{F}_q^d $ are subsets with $|E||F|\gg q^{d+\frac{1}{3}}$ then $|Δ(E)+Δ(F)|> q/2$. They also proved that the threshold $q^{d+\frac{1}{3}}$ is sharp when $|E|=|F|$. In this paper, we provide an improvement of this result in the unbalanced case, which is essentially sharp in odd dimensions. The most important tool in our proofs is an optimal $L^2$ restriction theorem for the sphere of zero radius.
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1134/s0081543821040131
- OA Status
- green
- References
- 19
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3053780662
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3053780662Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1134/s0081543821040131Digital Object Identifier
- Title
-
An Asymmetric Bound for Sum of Distance SetsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-09-01Full publication date if available
- Authors
-
Daewoong Cheong, Doowon Koh, Thang PhamList of authors in order
- Landing page
-
https://doi.org/10.1134/s0081543821040131Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2008.08344Direct OA link when available
- Concepts
-
Paraboloid, Combinatorics, Mathematics, RADIUS, Discrete mathematics, Physics, Geometry, Surface (topology), Computer science, Computer securityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3053780662 |
|---|---|
| doi | https://doi.org/10.1134/s0081543821040131 |
| ids.doi | https://doi.org/10.1134/s0081543821040131 |
| ids.mag | 3053780662 |
| ids.openalex | https://openalex.org/W3053780662 |
| fwci | 0.0 |
| type | preprint |
| title | An Asymmetric Bound for Sum of Distance Sets |
| biblio.issue | 1 |
| biblio.volume | 314 |
| biblio.last_page | 289 |
| biblio.first_page | 279 |
| topics[0].id | https://openalex.org/T11329 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2607 |
| topics[0].subfield.display_name | Discrete Mathematics and Combinatorics |
| topics[0].display_name | Limits and Structures in Graph Theory |
| topics[1].id | https://openalex.org/T12404 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2612 |
| topics[1].subfield.display_name | Numerical Analysis |
| topics[1].display_name | Mathematical Approximation and Integration |
| topics[2].id | https://openalex.org/T11130 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.987500011920929 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Coding theory and cryptography |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C203231007 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7759566307067871 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192768 |
| concepts[0].display_name | Paraboloid |
| concepts[1].id | https://openalex.org/C114614502 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7615213394165039 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[1].display_name | Combinatorics |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6802477240562439 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C178635117 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5761980414390564 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q747499 |
| concepts[3].display_name | RADIUS |
| concepts[4].id | https://openalex.org/C118615104 |
| concepts[4].level | 1 |
| concepts[4].score | 0.35742032527923584 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[4].display_name | Discrete mathematics |
| concepts[5].id | https://openalex.org/C121332964 |
| concepts[5].level | 0 |
| concepts[5].score | 0.33143559098243713 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[5].display_name | Physics |
| concepts[6].id | https://openalex.org/C2524010 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3049089014530182 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[6].display_name | Geometry |
| concepts[7].id | https://openalex.org/C2776799497 |
| concepts[7].level | 2 |
| concepts[7].score | 0.11158749461174011 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q484298 |
| concepts[7].display_name | Surface (topology) |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.06375926733016968 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C38652104 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[9].display_name | Computer security |
| keywords[0].id | https://openalex.org/keywords/paraboloid |
| keywords[0].score | 0.7759566307067871 |
| keywords[0].display_name | Paraboloid |
| keywords[1].id | https://openalex.org/keywords/combinatorics |
| keywords[1].score | 0.7615213394165039 |
| keywords[1].display_name | Combinatorics |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.6802477240562439 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/radius |
| keywords[3].score | 0.5761980414390564 |
| keywords[3].display_name | RADIUS |
| keywords[4].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[4].score | 0.35742032527923584 |
| keywords[4].display_name | Discrete mathematics |
| keywords[5].id | https://openalex.org/keywords/physics |
| keywords[5].score | 0.33143559098243713 |
| keywords[5].display_name | Physics |
| keywords[6].id | https://openalex.org/keywords/geometry |
| keywords[6].score | 0.3049089014530182 |
| keywords[6].display_name | Geometry |
| keywords[7].id | https://openalex.org/keywords/surface |
| keywords[7].score | 0.11158749461174011 |
| keywords[7].display_name | Surface (topology) |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.06375926733016968 |
| keywords[8].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.1134/s0081543821040131 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4210176787 |
| locations[0].source.issn | 0081-5438, 1531-8605 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0081-5438 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the Steklov Institute of Mathematics |
| locations[0].source.host_organization | https://openalex.org/P4310320267 |
| locations[0].source.host_organization_name | Pleiades Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320267, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Pleiades Publishing, Springer Nature |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the Steklov Institute of Mathematics |
| locations[0].landing_page_url | https://doi.org/10.1134/s0081543821040131 |
| locations[1].id | pmh:oai:arXiv.org:2008.08344 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2008.08344 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2008.08344 |
| locations[2].id | mag:3053780662 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | arXiv (Cornell University) |
| locations[2].landing_page_url | https://arxiv.org/pdf/2008.08344.pdf |
| locations[3].id | doi:10.48550/arxiv.2008.08344 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.48550/arxiv.2008.08344 |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5037482052 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3400-4088 |
| authorships[0].author.display_name | Daewoong Cheong |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I163753206 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mathematics, Chungbuk National University, Chungbuk, Korea |
| authorships[0].institutions[0].id | https://openalex.org/I163753206 |
| authorships[0].institutions[0].ror | https://ror.org/02wnxgj78 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I163753206 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Chungbuk National University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Daewoong Cheong |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Mathematics, Chungbuk National University, Chungbuk, Korea |
| authorships[1].author.id | https://openalex.org/A5065773757 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0825-641X |
| authorships[1].author.display_name | Doowon Koh |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I163753206 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mathematics, Chungbuk National University, Chungbuk, Korea |
| authorships[1].institutions[0].id | https://openalex.org/I163753206 |
| authorships[1].institutions[0].ror | https://ror.org/02wnxgj78 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I163753206 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Chungbuk National University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Doowon Koh |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Mathematics, Chungbuk National University, Chungbuk, Korea |
| authorships[2].author.id | https://openalex.org/A5001828232 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7600-7450 |
| authorships[2].author.display_name | Thang Pham |
| authorships[2].countries | CH, VN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I177233841 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Mathematics, HUS, Vietnam National University, Hanoi, Vietnam |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I35440088 |
| authorships[2].affiliations[1].raw_affiliation_string | The group Theory of Combinatorial Algorithms, ETH Zurich, Zurich, Switzerland |
| authorships[2].institutions[0].id | https://openalex.org/I35440088 |
| authorships[2].institutions[0].ror | https://ror.org/05a28rw58 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I35440088 |
| authorships[2].institutions[0].country_code | CH |
| authorships[2].institutions[0].display_name | ETH Zurich |
| authorships[2].institutions[1].id | https://openalex.org/I177233841 |
| authorships[2].institutions[1].ror | https://ror.org/02jmfj006 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I177233841 |
| authorships[2].institutions[1].country_code | VN |
| authorships[2].institutions[1].display_name | Vietnam National University, Hanoi |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Thang Pham |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Mathematics, HUS, Vietnam National University, Hanoi, Vietnam, The group Theory of Combinatorial Algorithms, ETH Zurich, Zurich, Switzerland |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2008.08344 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Asymmetric Bound for Sum of Distance Sets |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-23T05:10:03.516525 |
| primary_topic.id | https://openalex.org/T11329 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2607 |
| primary_topic.subfield.display_name | Discrete Mathematics and Combinatorics |
| primary_topic.display_name | Limits and Structures in Graph Theory |
| related_works | https://openalex.org/W3206204535, https://openalex.org/W3040158690, https://openalex.org/W2086590225, https://openalex.org/W2951362830, https://openalex.org/W2106229536, https://openalex.org/W1985466878, https://openalex.org/W3197514254, https://openalex.org/W2593722701, https://openalex.org/W2772468309, https://openalex.org/W1541058864, https://openalex.org/W2207884586, https://openalex.org/W2951494729, https://openalex.org/W2896317695, https://openalex.org/W2540258580, https://openalex.org/W2952160427, https://openalex.org/W3151777726, https://openalex.org/W121036266, https://openalex.org/W2977882561, https://openalex.org/W2087870395, https://openalex.org/W2109192730 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:arXiv.org:2008.08344 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2008.08344 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2008.08344 |
| primary_location.id | doi:10.1134/s0081543821040131 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4210176787 |
| primary_location.source.issn | 0081-5438, 1531-8605 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0081-5438 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the Steklov Institute of Mathematics |
| primary_location.source.host_organization | https://openalex.org/P4310320267 |
| primary_location.source.host_organization_name | Pleiades Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320267, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Pleiades Publishing, Springer Nature |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the Steklov Institute of Mathematics |
| primary_location.landing_page_url | https://doi.org/10.1134/s0081543821040131 |
| publication_date | 2021-09-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2026981546, https://openalex.org/W3000048277, https://openalex.org/W2027440839, https://openalex.org/W2964064606, https://openalex.org/W3008010078, https://openalex.org/W2167283930, https://openalex.org/W3040158690, https://openalex.org/W3167629974, https://openalex.org/W2946599233, https://openalex.org/W6773698515, https://openalex.org/W2623206656, https://openalex.org/W3125537384, https://openalex.org/W2513243963, https://openalex.org/W3007427333, https://openalex.org/W2613956024, https://openalex.org/W3016596842, https://openalex.org/W2048511567, https://openalex.org/W3104234064, https://openalex.org/W2898267824 |
| referenced_works_count | 19 |
| abstract_inverted_index.$ | 1, 37 |
| abstract_inverted_index.a | 24 |
| abstract_inverted_index.By | 17 |
| abstract_inverted_index.In | 57 |
| abstract_inverted_index.an | 62, 86 |
| abstract_inverted_index.by | 11 |
| abstract_inverted_index.if | 34 |
| abstract_inverted_index.in | 15, 67, 75, 82 |
| abstract_inverted_index.is | 53, 72, 85 |
| abstract_inverted_index.of | 13, 21, 64, 94 |
| abstract_inverted_index.on | 23 |
| abstract_inverted_index.we | 60 |
| abstract_inverted_index.For | 0 |
| abstract_inverted_index.The | 78 |
| abstract_inverted_index.and | 29 |
| abstract_inverted_index.are | 38 |
| abstract_inverted_index.for | 91 |
| abstract_inverted_index.let | 4 |
| abstract_inverted_index.odd | 76 |
| abstract_inverted_index.our | 83 |
| abstract_inverted_index.set | 9 |
| abstract_inverted_index.the | 7, 50, 68, 92 |
| abstract_inverted_index.$E$. | 16 |
| abstract_inverted_index.Koh, | 26 |
| abstract_inverted_index.They | 46 |
| abstract_inverted_index.Vinh | 30 |
| abstract_inverted_index.also | 47 |
| abstract_inverted_index.most | 79 |
| abstract_inverted_index.sets | 22 |
| abstract_inverted_index.that | 33, 49 |
| abstract_inverted_index.then | 43 |
| abstract_inverted_index.this | 58, 65 |
| abstract_inverted_index.tool | 81 |
| abstract_inverted_index.when | 55 |
| abstract_inverted_index.with | 40 |
| abstract_inverted_index.zero | 95 |
| abstract_inverted_index.$L^2$ | 88 |
| abstract_inverted_index.Pham, | 27 |
| abstract_inverted_index.Shen, | 28 |
| abstract_inverted_index.case, | 70 |
| abstract_inverted_index.pairs | 12 |
| abstract_inverted_index.q/2$. | 45 |
| abstract_inverted_index.sharp | 54, 74 |
| abstract_inverted_index.using | 18 |
| abstract_inverted_index.which | 71 |
| abstract_inverted_index.(2020) | 31 |
| abstract_inverted_index.denote | 6 |
| abstract_inverted_index.paper, | 59 |
| abstract_inverted_index.points | 14 |
| abstract_inverted_index.proofs | 84 |
| abstract_inverted_index.proved | 32, 48 |
| abstract_inverted_index.result | 66 |
| abstract_inverted_index.sphere | 93 |
| abstract_inverted_index.$Δ(E)$ | 5 |
| abstract_inverted_index.optimal | 87 |
| abstract_inverted_index.provide | 61 |
| abstract_inverted_index.radius. | 96 |
| abstract_inverted_index.subsets | 39 |
| abstract_inverted_index.theorem | 90 |
| abstract_inverted_index.E\subset | 2 |
| abstract_inverted_index.additive | 19 |
| abstract_inverted_index.distance | 8 |
| abstract_inverted_index.energies | 20 |
| abstract_inverted_index.important | 80 |
| abstract_inverted_index.threshold | 51 |
| abstract_inverted_index.$|E|=|F|$. | 56 |
| abstract_inverted_index.$|E||F|\gg | 41 |
| abstract_inverted_index.determined | 10 |
| abstract_inverted_index.unbalanced | 69 |
| abstract_inverted_index.$E,F\subset | 35 |
| abstract_inverted_index.dimensions. | 77 |
| abstract_inverted_index.essentially | 73 |
| abstract_inverted_index.improvement | 63 |
| abstract_inverted_index.paraboloid, | 25 |
| abstract_inverted_index.restriction | 89 |
| abstract_inverted_index.\mathbb{F}_q^d | 36 |
| abstract_inverted_index.\mathbb{F}_q^d$, | 3 |
| abstract_inverted_index.$|Δ(E)+Δ(F)|> | 44 |
| abstract_inverted_index.q^{d+\frac{1}{3}}$ | 42 |
| abstract_inverted_index.$q^{d+\frac{1}{3}}$ | 52 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.08603989 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |