An attention-based neural ordinary differential equation framework for modeling inelastic processes Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.10633
To preserve strictly conservative behavior as well as model the variety of dissipative behavior displayed by solid materials, we propose a significant enhancement to the internal state variable-neural ordinary differential equation (ISV-NODE) framework. In this data-driven, physics-constrained modeling framework internal states are inferred rather than prescribed. The ISV-NODE consists of: (a) a stress model dependent, on observable deformation and inferred internal state, and (b) a model of the evolution of the internal states. The enhancements to ISV-NODE proposed in this work are multifold: (a) a partially input convex neural network stress potential provides polyconvexity in terms of observed strain and inferred state, and (b) an internal state flow model uses common latent features to inform novel attention-based gating and drives the flow of internal state only in dissipative regimes. We demonstrated that this architecture can accurately model dissipative and conservative behavior across an isotropic, isothermal elastic-viscoelastic-elastoplastic spectrum with three exemplars.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.10633
- https://arxiv.org/pdf/2502.10633
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407683948
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407683948Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.10633Digital Object Identifier
- Title
-
An attention-based neural ordinary differential equation framework for modeling inelastic processesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-15Full publication date if available
- Authors
-
Reese E. Jones, Jan N. FuhgList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.10633Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.10633Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.10633Direct OA link when available
- Concepts
-
Ordinary differential equation, Differential (mechanical device), Computer science, Differential equation, Applied mathematics, Mathematics, Physics, Mathematical analysis, ThermodynamicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407683948 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.10633 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.10633 |
| ids.openalex | https://openalex.org/W4407683948 |
| fwci | |
| type | preprint |
| title | An attention-based neural ordinary differential equation framework for modeling inelastic processes |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9059000015258789 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C51544822 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6541283130645752 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q465274 |
| concepts[0].display_name | Ordinary differential equation |
| concepts[1].id | https://openalex.org/C93226319 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4458518624305725 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q193137 |
| concepts[1].display_name | Differential (mechanical device) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4363689422607422 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C78045399 |
| concepts[3].level | 2 |
| concepts[3].score | 0.40351957082748413 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11214 |
| concepts[3].display_name | Differential equation |
| concepts[4].id | https://openalex.org/C28826006 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3829641342163086 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[4].display_name | Applied mathematics |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3360939621925354 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3126521706581116 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C134306372 |
| concepts[7].level | 1 |
| concepts[7].score | 0.2636653184890747 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[7].display_name | Mathematical analysis |
| concepts[8].id | https://openalex.org/C97355855 |
| concepts[8].level | 1 |
| concepts[8].score | 0.07954850792884827 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[8].display_name | Thermodynamics |
| keywords[0].id | https://openalex.org/keywords/ordinary-differential-equation |
| keywords[0].score | 0.6541283130645752 |
| keywords[0].display_name | Ordinary differential equation |
| keywords[1].id | https://openalex.org/keywords/differential |
| keywords[1].score | 0.4458518624305725 |
| keywords[1].display_name | Differential (mechanical device) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4363689422607422 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/differential-equation |
| keywords[3].score | 0.40351957082748413 |
| keywords[3].display_name | Differential equation |
| keywords[4].id | https://openalex.org/keywords/applied-mathematics |
| keywords[4].score | 0.3829641342163086 |
| keywords[4].display_name | Applied mathematics |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.3360939621925354 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.3126521706581116 |
| keywords[6].display_name | Physics |
| keywords[7].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[7].score | 0.2636653184890747 |
| keywords[7].display_name | Mathematical analysis |
| keywords[8].id | https://openalex.org/keywords/thermodynamics |
| keywords[8].score | 0.07954850792884827 |
| keywords[8].display_name | Thermodynamics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.10633 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.10633 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.10633 |
| locations[1].id | doi:10.48550/arxiv.2502.10633 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.10633 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5075985796 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2332-6279 |
| authorships[0].author.display_name | Reese E. Jones |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jones, Reese E. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5058627053 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5986-3770 |
| authorships[1].author.display_name | Jan N. Fuhg |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Fuhg, Jan N. |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.10633 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An attention-based neural ordinary differential equation framework for modeling inelastic processes |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9059000015258789 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W2142036596, https://openalex.org/W3102283898, https://openalex.org/W1977478463, https://openalex.org/W2043671984 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.10633 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.10633 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.10633 |
| primary_location.id | pmh:oai:arXiv.org:2502.10633 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.10633 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.10633 |
| publication_date | 2025-02-15 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 20, 51, 64, 84 |
| abstract_inverted_index.In | 33 |
| abstract_inverted_index.To | 0 |
| abstract_inverted_index.We | 129 |
| abstract_inverted_index.an | 104, 142 |
| abstract_inverted_index.as | 5, 7 |
| abstract_inverted_index.by | 15 |
| abstract_inverted_index.in | 78, 94, 126 |
| abstract_inverted_index.of | 11, 66, 69, 96, 122 |
| abstract_inverted_index.on | 55 |
| abstract_inverted_index.to | 23, 75, 113 |
| abstract_inverted_index.we | 18 |
| abstract_inverted_index.(a) | 50, 83 |
| abstract_inverted_index.(b) | 63, 103 |
| abstract_inverted_index.The | 46, 73 |
| abstract_inverted_index.and | 58, 62, 99, 102, 118, 138 |
| abstract_inverted_index.are | 41, 81 |
| abstract_inverted_index.can | 134 |
| abstract_inverted_index.of: | 49 |
| abstract_inverted_index.the | 9, 24, 67, 70, 120 |
| abstract_inverted_index.flow | 107, 121 |
| abstract_inverted_index.only | 125 |
| abstract_inverted_index.than | 44 |
| abstract_inverted_index.that | 131 |
| abstract_inverted_index.this | 34, 79, 132 |
| abstract_inverted_index.uses | 109 |
| abstract_inverted_index.well | 6 |
| abstract_inverted_index.with | 147 |
| abstract_inverted_index.work | 80 |
| abstract_inverted_index.input | 86 |
| abstract_inverted_index.model | 8, 53, 65, 108, 136 |
| abstract_inverted_index.novel | 115 |
| abstract_inverted_index.solid | 16 |
| abstract_inverted_index.state | 26, 106, 124 |
| abstract_inverted_index.terms | 95 |
| abstract_inverted_index.three | 148 |
| abstract_inverted_index.across | 141 |
| abstract_inverted_index.common | 110 |
| abstract_inverted_index.convex | 87 |
| abstract_inverted_index.drives | 119 |
| abstract_inverted_index.gating | 117 |
| abstract_inverted_index.inform | 114 |
| abstract_inverted_index.latent | 111 |
| abstract_inverted_index.neural | 88 |
| abstract_inverted_index.rather | 43 |
| abstract_inverted_index.state, | 61, 101 |
| abstract_inverted_index.states | 40 |
| abstract_inverted_index.strain | 98 |
| abstract_inverted_index.stress | 52, 90 |
| abstract_inverted_index.network | 89 |
| abstract_inverted_index.propose | 19 |
| abstract_inverted_index.states. | 72 |
| abstract_inverted_index.variety | 10 |
| abstract_inverted_index.ISV-NODE | 47, 76 |
| abstract_inverted_index.behavior | 4, 13, 140 |
| abstract_inverted_index.consists | 48 |
| abstract_inverted_index.equation | 30 |
| abstract_inverted_index.features | 112 |
| abstract_inverted_index.inferred | 42, 59, 100 |
| abstract_inverted_index.internal | 25, 39, 60, 71, 105, 123 |
| abstract_inverted_index.modeling | 37 |
| abstract_inverted_index.observed | 97 |
| abstract_inverted_index.ordinary | 28 |
| abstract_inverted_index.preserve | 1 |
| abstract_inverted_index.proposed | 77 |
| abstract_inverted_index.provides | 92 |
| abstract_inverted_index.regimes. | 128 |
| abstract_inverted_index.spectrum | 146 |
| abstract_inverted_index.strictly | 2 |
| abstract_inverted_index.displayed | 14 |
| abstract_inverted_index.evolution | 68 |
| abstract_inverted_index.framework | 38 |
| abstract_inverted_index.partially | 85 |
| abstract_inverted_index.potential | 91 |
| abstract_inverted_index.(ISV-NODE) | 31 |
| abstract_inverted_index.accurately | 135 |
| abstract_inverted_index.dependent, | 54 |
| abstract_inverted_index.exemplars. | 149 |
| abstract_inverted_index.framework. | 32 |
| abstract_inverted_index.isothermal | 144 |
| abstract_inverted_index.isotropic, | 143 |
| abstract_inverted_index.materials, | 17 |
| abstract_inverted_index.multifold: | 82 |
| abstract_inverted_index.observable | 56 |
| abstract_inverted_index.deformation | 57 |
| abstract_inverted_index.dissipative | 12, 127, 137 |
| abstract_inverted_index.enhancement | 22 |
| abstract_inverted_index.prescribed. | 45 |
| abstract_inverted_index.significant | 21 |
| abstract_inverted_index.architecture | 133 |
| abstract_inverted_index.conservative | 3, 139 |
| abstract_inverted_index.data-driven, | 35 |
| abstract_inverted_index.demonstrated | 130 |
| abstract_inverted_index.differential | 29 |
| abstract_inverted_index.enhancements | 74 |
| abstract_inverted_index.polyconvexity | 93 |
| abstract_inverted_index.attention-based | 116 |
| abstract_inverted_index.variable-neural | 27 |
| abstract_inverted_index.physics-constrained | 36 |
| abstract_inverted_index.elastic-viscoelastic-elastoplastic | 145 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |