An Automated Framework Based on Deep Learning for Shark Recognition Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/jmse10070942
The recent progress in deep learning has given rise to a non-invasive and effective approach for animal biometrics. These modern techniques allow researchers to track animal individuals on a large-scale image database. Typical approaches are suited to a closed-set recognition problem, which is to identify images of known objects only. However, such approaches are not scalable because they mis-classify images of unknown objects. To recognize the images of unknown objects as ‘unknown’, a framework should be able to deal with the open set recognition scenario. This paper proposes a fully automatic, vision-based identification framework capable of recognizing shark individuals including those that are unknown. The framework first detects and extracts the shark from the original image. After that, we develop a deep network to transform the extracted image to an embedding vector in latent space. The proposed network consists of the Visual Geometry Group-UNet (VGG-UNet) and a modified Visual Geometry Group-16 (VGG-16) network. The VGG-UNet is utilized to detect shark bodies, and the modified VGG-16 is used to learn embeddings of shark individuals. For the recognition task, our framework learns a decision boundary using a one-class support vector machine (OSVM) for each shark included in the training phase using a few embedding vectors belonging to them, then it determines whether a new shark image is recognized as belonging to a known shark individual. Our proposed network can recognize shark individuals with high accuracy and can effectively deal with the open set recognition problem with shark images.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/jmse10070942
- https://www.mdpi.com/2077-1312/10/7/942/pdf?version=1657519489
- OA Status
- gold
- Cited By
- 8
- References
- 20
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4285014064
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4285014064Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/jmse10070942Digital Object Identifier
- Title
-
An Automated Framework Based on Deep Learning for Shark RecognitionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-07-09Full publication date if available
- Authors
-
Nhat Anh Le, Jucheol Moon, Christopher G. Lowe, Hyunil Kim, Sang‐Il ChoiList of authors in order
- Landing page
-
https://doi.org/10.3390/jmse10070942Publisher landing page
- PDF URL
-
https://www.mdpi.com/2077-1312/10/7/942/pdf?version=1657519489Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2077-1312/10/7/942/pdf?version=1657519489Direct OA link when available
- Concepts
-
Artificial intelligence, Computer science, Embedding, Identification (biology), Set (abstract data type), Pattern recognition (psychology), Deep learning, Image (mathematics), Support vector machine, Task (project management), Scale (ratio), Computer vision, Machine learning, Geography, Cartography, Biology, Programming language, Management, Botany, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 3, 2023: 2, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
20Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4285014064 |
|---|---|
| doi | https://doi.org/10.3390/jmse10070942 |
| ids.doi | https://doi.org/10.3390/jmse10070942 |
| ids.openalex | https://openalex.org/W4285014064 |
| fwci | 2.98737157 |
| type | article |
| title | An Automated Framework Based on Deep Learning for Shark Recognition |
| awards[0].id | https://openalex.org/G3237233400 |
| awards[0].funder_id | https://openalex.org/F4320322120 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2021R1A2B5B01001412 |
| awards[0].funder_display_name | National Research Foundation of Korea |
| biblio.issue | 7 |
| biblio.volume | 10 |
| biblio.last_page | 942 |
| biblio.first_page | 942 |
| topics[0].id | https://openalex.org/T11387 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9980999827384949 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2309 |
| topics[0].subfield.display_name | Nature and Landscape Conservation |
| topics[0].display_name | Ichthyology and Marine Biology |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9868999719619751 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9735000133514404 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| funders[0].id | https://openalex.org/F4320322120 |
| funders[0].ror | https://ror.org/013aysd81 |
| funders[0].display_name | National Research Foundation of Korea |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7612942457199097 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6514085531234741 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C41608201 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5709692239761353 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[2].display_name | Embedding |
| concepts[3].id | https://openalex.org/C116834253 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5668017268180847 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[3].display_name | Identification (biology) |
| concepts[4].id | https://openalex.org/C177264268 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5512762665748596 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[4].display_name | Set (abstract data type) |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5437766909599304 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4716562330722809 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C115961682 |
| concepts[7].level | 2 |
| concepts[7].score | 0.442920982837677 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[7].display_name | Image (mathematics) |
| concepts[8].id | https://openalex.org/C12267149 |
| concepts[8].level | 2 |
| concepts[8].score | 0.41684022545814514 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[8].display_name | Support vector machine |
| concepts[9].id | https://openalex.org/C2780451532 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4137040674686432 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[9].display_name | Task (project management) |
| concepts[10].id | https://openalex.org/C2778755073 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41002246737480164 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[10].display_name | Scale (ratio) |
| concepts[11].id | https://openalex.org/C31972630 |
| concepts[11].level | 1 |
| concepts[11].score | 0.38236933946609497 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[11].display_name | Computer vision |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3535587787628174 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C205649164 |
| concepts[13].level | 0 |
| concepts[13].score | 0.13265100121498108 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[13].display_name | Geography |
| concepts[14].id | https://openalex.org/C58640448 |
| concepts[14].level | 1 |
| concepts[14].score | 0.09274351596832275 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[14].display_name | Cartography |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| concepts[16].id | https://openalex.org/C199360897 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[16].display_name | Programming language |
| concepts[17].id | https://openalex.org/C187736073 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[17].display_name | Management |
| concepts[18].id | https://openalex.org/C59822182 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[18].display_name | Botany |
| concepts[19].id | https://openalex.org/C162324750 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[19].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.7612942457199097 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6514085531234741 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/embedding |
| keywords[2].score | 0.5709692239761353 |
| keywords[2].display_name | Embedding |
| keywords[3].id | https://openalex.org/keywords/identification |
| keywords[3].score | 0.5668017268180847 |
| keywords[3].display_name | Identification (biology) |
| keywords[4].id | https://openalex.org/keywords/set |
| keywords[4].score | 0.5512762665748596 |
| keywords[4].display_name | Set (abstract data type) |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.5437766909599304 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.4716562330722809 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/image |
| keywords[7].score | 0.442920982837677 |
| keywords[7].display_name | Image (mathematics) |
| keywords[8].id | https://openalex.org/keywords/support-vector-machine |
| keywords[8].score | 0.41684022545814514 |
| keywords[8].display_name | Support vector machine |
| keywords[9].id | https://openalex.org/keywords/task |
| keywords[9].score | 0.4137040674686432 |
| keywords[9].display_name | Task (project management) |
| keywords[10].id | https://openalex.org/keywords/scale |
| keywords[10].score | 0.41002246737480164 |
| keywords[10].display_name | Scale (ratio) |
| keywords[11].id | https://openalex.org/keywords/computer-vision |
| keywords[11].score | 0.38236933946609497 |
| keywords[11].display_name | Computer vision |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.3535587787628174 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/geography |
| keywords[13].score | 0.13265100121498108 |
| keywords[13].display_name | Geography |
| keywords[14].id | https://openalex.org/keywords/cartography |
| keywords[14].score | 0.09274351596832275 |
| keywords[14].display_name | Cartography |
| language | en |
| locations[0].id | doi:10.3390/jmse10070942 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2736865057 |
| locations[0].source.issn | 2077-1312 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2077-1312 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Marine Science and Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2077-1312/10/7/942/pdf?version=1657519489 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Marine Science and Engineering |
| locations[0].landing_page_url | https://doi.org/10.3390/jmse10070942 |
| locations[1].id | pmh:oai:doaj.org/article:b2d9e8124ea447bc98728a44af9426ea |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Marine Science and Engineering, Vol 10, Iss 7, p 942 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/b2d9e8124ea447bc98728a44af9426ea |
| locations[2].id | pmh:oai:mdpi.com:/2077-1312/10/7/942/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Journal of Marine Science and Engineering; Volume 10; Issue 7; Pages: 942 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/jmse10070942 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5004858843 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Nhat Anh Le |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I59897056 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Engineering and Computer Science, California State University, Long Beach, CA 90840, USA |
| authorships[0].institutions[0].id | https://openalex.org/I59897056 |
| authorships[0].institutions[0].ror | https://ror.org/0080fxk18 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I59897056 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | California State University, Long Beach |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nhat Anh Le |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Engineering and Computer Science, California State University, Long Beach, CA 90840, USA |
| authorships[1].author.id | https://openalex.org/A5072343217 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2885-0627 |
| authorships[1].author.display_name | Jucheol Moon |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I59897056 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Engineering and Computer Science, California State University, Long Beach, CA 90840, USA |
| authorships[1].institutions[0].id | https://openalex.org/I59897056 |
| authorships[1].institutions[0].ror | https://ror.org/0080fxk18 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I59897056 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | California State University, Long Beach |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jucheol Moon |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Engineering and Computer Science, California State University, Long Beach, CA 90840, USA |
| authorships[2].author.id | https://openalex.org/A5069148631 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9389-8208 |
| authorships[2].author.display_name | Christopher G. Lowe |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I59897056 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Biological Sciences, California State University, Long Beach, CA 90840, USA |
| authorships[2].institutions[0].id | https://openalex.org/I59897056 |
| authorships[2].institutions[0].ror | https://ror.org/0080fxk18 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I59897056 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | California State University, Long Beach |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Christopher G. Lowe |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Biological Sciences, California State University, Long Beach, CA 90840, USA |
| authorships[3].author.id | https://openalex.org/A5101568462 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4018-4540 |
| authorships[3].author.display_name | Hyunil Kim |
| authorships[3].countries | KR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I89015989 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Dankook University, Yongin 16890, Korea |
| authorships[3].institutions[0].id | https://openalex.org/I89015989 |
| authorships[3].institutions[0].ror | https://ror.org/058pdbn81 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I89015989 |
| authorships[3].institutions[0].country_code | KR |
| authorships[3].institutions[0].display_name | Dankook University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hyun-Il Kim |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science and Engineering, Dankook University, Yongin 16890, Korea |
| authorships[4].author.id | https://openalex.org/A5041074726 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0462-0050 |
| authorships[4].author.display_name | Sang‐Il Choi |
| authorships[4].countries | KR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I89015989 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Engineering, Dankook University, Yongin 16890, Korea |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I89015989 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Computer Science and Engineering, Dankook University, Yongin 16890, Korea |
| authorships[4].institutions[0].id | https://openalex.org/I89015989 |
| authorships[4].institutions[0].ror | https://ror.org/058pdbn81 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I89015989 |
| authorships[4].institutions[0].country_code | KR |
| authorships[4].institutions[0].display_name | Dankook University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Sang-Il Choi |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Computer Engineering, Dankook University, Yongin 16890, Korea, Department of Computer Science and Engineering, Dankook University, Yongin 16890, Korea |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2077-1312/10/7/942/pdf?version=1657519489 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Automated Framework Based on Deep Learning for Shark Recognition |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11387 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9980999827384949 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2309 |
| primary_topic.subfield.display_name | Nature and Landscape Conservation |
| primary_topic.display_name | Ichthyology and Marine Biology |
| related_works | https://openalex.org/W2081900870, https://openalex.org/W2090763504, https://openalex.org/W4375867731, https://openalex.org/W2037549926, https://openalex.org/W148178222, https://openalex.org/W2345479200, https://openalex.org/W2183306018, https://openalex.org/W2104657898, https://openalex.org/W1948992892, https://openalex.org/W2312145515 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/jmse10070942 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2736865057 |
| best_oa_location.source.issn | 2077-1312 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2077-1312 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Marine Science and Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2077-1312/10/7/942/pdf?version=1657519489 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Marine Science and Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.3390/jmse10070942 |
| primary_location.id | doi:10.3390/jmse10070942 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2736865057 |
| primary_location.source.issn | 2077-1312 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2077-1312 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Marine Science and Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2077-1312/10/7/942/pdf?version=1657519489 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Marine Science and Engineering |
| primary_location.landing_page_url | https://doi.org/10.3390/jmse10070942 |
| publication_date | 2022-07-09 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2476786131, https://openalex.org/W6677140201, https://openalex.org/W2097581755, https://openalex.org/W2318391375, https://openalex.org/W2398402009, https://openalex.org/W2176476698, https://openalex.org/W2997851660, https://openalex.org/W1580935273, https://openalex.org/W4249502696, https://openalex.org/W3216213780, https://openalex.org/W2521680879, https://openalex.org/W2105497548, https://openalex.org/W2096733369, https://openalex.org/W2499316477, https://openalex.org/W2076063813, https://openalex.org/W2108598243, https://openalex.org/W1686810756, https://openalex.org/W2889326414, https://openalex.org/W2962858109, https://openalex.org/W2114118726 |
| referenced_works_count | 20 |
| abstract_inverted_index.a | 10, 28, 37, 72, 88, 120, 146, 180, 184, 199, 210, 219 |
| abstract_inverted_index.To | 63 |
| abstract_inverted_index.an | 129 |
| abstract_inverted_index.as | 70, 216 |
| abstract_inverted_index.be | 75 |
| abstract_inverted_index.in | 3, 132, 194 |
| abstract_inverted_index.is | 42, 155, 165, 214 |
| abstract_inverted_index.it | 207 |
| abstract_inverted_index.of | 46, 60, 67, 95, 139, 170 |
| abstract_inverted_index.on | 27 |
| abstract_inverted_index.to | 9, 23, 36, 43, 77, 123, 128, 157, 167, 204, 218 |
| abstract_inverted_index.we | 118 |
| abstract_inverted_index.For | 173 |
| abstract_inverted_index.Our | 223 |
| abstract_inverted_index.The | 0, 104, 135, 153 |
| abstract_inverted_index.and | 12, 108, 145, 161, 233 |
| abstract_inverted_index.are | 34, 53, 102 |
| abstract_inverted_index.can | 226, 234 |
| abstract_inverted_index.few | 200 |
| abstract_inverted_index.for | 15, 190 |
| abstract_inverted_index.has | 6 |
| abstract_inverted_index.new | 211 |
| abstract_inverted_index.not | 54 |
| abstract_inverted_index.our | 177 |
| abstract_inverted_index.set | 82, 240 |
| abstract_inverted_index.the | 65, 80, 110, 113, 125, 140, 162, 174, 195, 238 |
| abstract_inverted_index.This | 85 |
| abstract_inverted_index.able | 76 |
| abstract_inverted_index.deal | 78, 236 |
| abstract_inverted_index.deep | 4, 121 |
| abstract_inverted_index.each | 191 |
| abstract_inverted_index.from | 112 |
| abstract_inverted_index.high | 231 |
| abstract_inverted_index.open | 81, 239 |
| abstract_inverted_index.rise | 8 |
| abstract_inverted_index.such | 51 |
| abstract_inverted_index.that | 101 |
| abstract_inverted_index.then | 206 |
| abstract_inverted_index.they | 57 |
| abstract_inverted_index.used | 166 |
| abstract_inverted_index.with | 79, 230, 237, 243 |
| abstract_inverted_index.After | 116 |
| abstract_inverted_index.These | 18 |
| abstract_inverted_index.allow | 21 |
| abstract_inverted_index.first | 106 |
| abstract_inverted_index.fully | 89 |
| abstract_inverted_index.given | 7 |
| abstract_inverted_index.image | 30, 127, 213 |
| abstract_inverted_index.known | 47, 220 |
| abstract_inverted_index.learn | 168 |
| abstract_inverted_index.only. | 49 |
| abstract_inverted_index.paper | 86 |
| abstract_inverted_index.phase | 197 |
| abstract_inverted_index.shark | 97, 111, 159, 171, 192, 212, 221, 228, 244 |
| abstract_inverted_index.task, | 176 |
| abstract_inverted_index.that, | 117 |
| abstract_inverted_index.them, | 205 |
| abstract_inverted_index.those | 100 |
| abstract_inverted_index.track | 24 |
| abstract_inverted_index.using | 183, 198 |
| abstract_inverted_index.which | 41 |
| abstract_inverted_index.(OSVM) | 189 |
| abstract_inverted_index.VGG-16 | 164 |
| abstract_inverted_index.Visual | 141, 148 |
| abstract_inverted_index.animal | 16, 25 |
| abstract_inverted_index.detect | 158 |
| abstract_inverted_index.image. | 115 |
| abstract_inverted_index.images | 45, 59, 66 |
| abstract_inverted_index.latent | 133 |
| abstract_inverted_index.learns | 179 |
| abstract_inverted_index.modern | 19 |
| abstract_inverted_index.recent | 1 |
| abstract_inverted_index.should | 74 |
| abstract_inverted_index.space. | 134 |
| abstract_inverted_index.suited | 35 |
| abstract_inverted_index.vector | 131, 187 |
| abstract_inverted_index.Typical | 32 |
| abstract_inverted_index.because | 56 |
| abstract_inverted_index.bodies, | 160 |
| abstract_inverted_index.capable | 94 |
| abstract_inverted_index.detects | 107 |
| abstract_inverted_index.develop | 119 |
| abstract_inverted_index.images. | 245 |
| abstract_inverted_index.machine | 188 |
| abstract_inverted_index.network | 122, 137, 225 |
| abstract_inverted_index.objects | 48, 69 |
| abstract_inverted_index.problem | 242 |
| abstract_inverted_index.support | 186 |
| abstract_inverted_index.unknown | 61, 68 |
| abstract_inverted_index.vectors | 202 |
| abstract_inverted_index.whether | 209 |
| abstract_inverted_index.(VGG-16) | 151 |
| abstract_inverted_index.Geometry | 142, 149 |
| abstract_inverted_index.Group-16 | 150 |
| abstract_inverted_index.However, | 50 |
| abstract_inverted_index.VGG-UNet | 154 |
| abstract_inverted_index.accuracy | 232 |
| abstract_inverted_index.approach | 14 |
| abstract_inverted_index.boundary | 182 |
| abstract_inverted_index.consists | 138 |
| abstract_inverted_index.decision | 181 |
| abstract_inverted_index.extracts | 109 |
| abstract_inverted_index.identify | 44 |
| abstract_inverted_index.included | 193 |
| abstract_inverted_index.learning | 5 |
| abstract_inverted_index.modified | 147, 163 |
| abstract_inverted_index.network. | 152 |
| abstract_inverted_index.objects. | 62 |
| abstract_inverted_index.original | 114 |
| abstract_inverted_index.problem, | 40 |
| abstract_inverted_index.progress | 2 |
| abstract_inverted_index.proposed | 136, 224 |
| abstract_inverted_index.proposes | 87 |
| abstract_inverted_index.scalable | 55 |
| abstract_inverted_index.training | 196 |
| abstract_inverted_index.unknown. | 103 |
| abstract_inverted_index.utilized | 156 |
| abstract_inverted_index.belonging | 203, 217 |
| abstract_inverted_index.database. | 31 |
| abstract_inverted_index.effective | 13 |
| abstract_inverted_index.embedding | 130, 201 |
| abstract_inverted_index.extracted | 126 |
| abstract_inverted_index.framework | 73, 93, 105, 178 |
| abstract_inverted_index.including | 99 |
| abstract_inverted_index.one-class | 185 |
| abstract_inverted_index.recognize | 64, 227 |
| abstract_inverted_index.scenario. | 84 |
| abstract_inverted_index.transform | 124 |
| abstract_inverted_index.(VGG-UNet) | 144 |
| abstract_inverted_index.Group-UNet | 143 |
| abstract_inverted_index.approaches | 33, 52 |
| abstract_inverted_index.automatic, | 90 |
| abstract_inverted_index.closed-set | 38 |
| abstract_inverted_index.determines | 208 |
| abstract_inverted_index.embeddings | 169 |
| abstract_inverted_index.recognized | 215 |
| abstract_inverted_index.techniques | 20 |
| abstract_inverted_index.biometrics. | 17 |
| abstract_inverted_index.effectively | 235 |
| abstract_inverted_index.individual. | 222 |
| abstract_inverted_index.individuals | 26, 98, 229 |
| abstract_inverted_index.large-scale | 29 |
| abstract_inverted_index.recognition | 39, 83, 175, 241 |
| abstract_inverted_index.recognizing | 96 |
| abstract_inverted_index.researchers | 22 |
| abstract_inverted_index.individuals. | 172 |
| abstract_inverted_index.mis-classify | 58 |
| abstract_inverted_index.non-invasive | 11 |
| abstract_inverted_index.vision-based | 91 |
| abstract_inverted_index.identification | 92 |
| abstract_inverted_index.‘unknown’, | 71 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5041074726 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I89015989 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/14 |
| sustainable_development_goals[0].score | 0.8399999737739563 |
| sustainable_development_goals[0].display_name | Life below water |
| citation_normalized_percentile.value | 0.86494381 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |