An automatic data augment method for remaining useful life prediction of aeroengines Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-7162348/v1
The prediction of remaining service life in complex aviation engine systems is of great significance for airlines to develop maintenance plans for engines and reduce maintenance cost.However, the complex operating conditions of the engine and insufficient fault mode data limit the prediction accuracy. One direction to solve such problems is data augmentation, which aims to generate synthetic data from real datasets to expand training samples and improve the model's generalization ability.Admittedly, There are already many mature data augmentation methods, but the optimal data augmentation strategy for RUL prediction tasks varies in different situations. Confirming which data augmentation strategy is most suitable for the current remaining useful life prediction problem requires human experience or extensive parameter experiments.This work proposes an automatic data augmentation method(AdaRUL),Build an automatic search space and use reinforcement learning algorithms to search for the optimal strategy in the automatic search space to expand the sample dataset. The experiments conducted on the C-MAPSS public dataset provided by NASA demonstrate that AdaRUL has successfully generated high fidelity multivariate monitoring data. In addition, these generated data effectively support RUL prediction tasks and significantly improve the predictive ability of underlying deep learning models.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-7162348/v1
- https://www.researchsquare.com/article/rs-7162348/latest.pdf
- OA Status
- gold
- References
- 19
- OpenAlex ID
- https://openalex.org/W4414410273
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414410273Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-7162348/v1Digital Object Identifier
- Title
-
An automatic data augment method for remaining useful life prediction of aeroenginesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-22Full publication date if available
- Authors
-
Z. Jane Wang, Hanqing ZhouList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-7162348/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-7162348/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-7162348/latest.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
19Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414410273 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-7162348/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-7162348/v1 |
| ids.openalex | https://openalex.org/W4414410273 |
| fwci | 0.0 |
| type | preprint |
| title | An automatic data augment method for remaining useful life prediction of aeroengines |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8845000267028809 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T12597 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.8485999703407288 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2213 |
| topics[1].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[1].display_name | Fire Detection and Safety Systems |
| topics[2].id | https://openalex.org/T10534 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.8424999713897705 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Structural Health Monitoring Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-7162348/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-7162348/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-7162348/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5051587486 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3791-0249 |
| authorships[0].author.display_name | Z. Jane Wang |
| authorships[0].affiliations[0].raw_affiliation_string | China Aero-Polytechnology Establishment |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zequan Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | China Aero-Polytechnology Establishment |
| authorships[1].author.id | https://openalex.org/A5091316221 |
| authorships[1].author.orcid | https://orcid.org/0009-0004-2077-6030 |
| authorships[1].author.display_name | Hanqing Zhou |
| authorships[1].affiliations[0].raw_affiliation_string | China Aero-Polytechnology Establishment |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Hanqing Zhou |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | China Aero-Polytechnology Establishment |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-7162348/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An automatic data augment method for remaining useful life prediction of aeroengines |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8845000267028809 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-7162348/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-7162348/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-7162348/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-7162348/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-7162348/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-7162348/v1 |
| publication_date | 2025-09-22 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3042756942, https://openalex.org/W2883525675, https://openalex.org/W2617137613, https://openalex.org/W3024761859, https://openalex.org/W4308000713, https://openalex.org/W3201901361, https://openalex.org/W4317436033, https://openalex.org/W4298007512, https://openalex.org/W3207579445, https://openalex.org/W3096831136, https://openalex.org/W2114492997, https://openalex.org/W2961638199, https://openalex.org/W2795398772, https://openalex.org/W3046438071, https://openalex.org/W4290929874, https://openalex.org/W3042925324, https://openalex.org/W2481916066, https://openalex.org/W3173407600, https://openalex.org/W4385245566 |
| referenced_works_count | 19 |
| abstract_inverted_index.In | 171 |
| abstract_inverted_index.an | 119, 124 |
| abstract_inverted_index.by | 158 |
| abstract_inverted_index.in | 7, 91, 139 |
| abstract_inverted_index.is | 12, 50, 99 |
| abstract_inverted_index.of | 3, 13, 32, 187 |
| abstract_inverted_index.on | 152 |
| abstract_inverted_index.or | 113 |
| abstract_inverted_index.to | 18, 46, 55, 62, 133, 144 |
| abstract_inverted_index.One | 44 |
| abstract_inverted_index.RUL | 87, 178 |
| abstract_inverted_index.The | 1, 149 |
| abstract_inverted_index.and | 24, 35, 66, 128, 181 |
| abstract_inverted_index.are | 73 |
| abstract_inverted_index.but | 80 |
| abstract_inverted_index.for | 16, 22, 86, 102, 135 |
| abstract_inverted_index.has | 163 |
| abstract_inverted_index.the | 28, 33, 41, 68, 81, 103, 136, 140, 146, 153, 184 |
| abstract_inverted_index.use | 129 |
| abstract_inverted_index.NASA | 159 |
| abstract_inverted_index.aims | 54 |
| abstract_inverted_index.data | 39, 51, 58, 77, 83, 96, 121, 175 |
| abstract_inverted_index.deep | 189 |
| abstract_inverted_index.from | 59 |
| abstract_inverted_index.high | 166 |
| abstract_inverted_index.life | 6, 107 |
| abstract_inverted_index.many | 75 |
| abstract_inverted_index.mode | 38 |
| abstract_inverted_index.most | 100 |
| abstract_inverted_index.real | 60 |
| abstract_inverted_index.such | 48 |
| abstract_inverted_index.that | 161 |
| abstract_inverted_index.work | 117 |
| abstract_inverted_index.There | 72 |
| abstract_inverted_index.data. | 170 |
| abstract_inverted_index.fault | 37 |
| abstract_inverted_index.great | 14 |
| abstract_inverted_index.human | 111 |
| abstract_inverted_index.limit | 40 |
| abstract_inverted_index.plans | 21 |
| abstract_inverted_index.solve | 47 |
| abstract_inverted_index.space | 127, 143 |
| abstract_inverted_index.tasks | 89, 180 |
| abstract_inverted_index.these | 173 |
| abstract_inverted_index.which | 53, 95 |
| abstract_inverted_index.AdaRUL | 162 |
| abstract_inverted_index.engine | 10, 34 |
| abstract_inverted_index.expand | 63, 145 |
| abstract_inverted_index.mature | 76 |
| abstract_inverted_index.public | 155 |
| abstract_inverted_index.reduce | 25 |
| abstract_inverted_index.sample | 147 |
| abstract_inverted_index.search | 126, 134, 142 |
| abstract_inverted_index.useful | 106 |
| abstract_inverted_index.varies | 90 |
| abstract_inverted_index.C-MAPSS | 154 |
| abstract_inverted_index.ability | 186 |
| abstract_inverted_index.already | 74 |
| abstract_inverted_index.complex | 8, 29 |
| abstract_inverted_index.current | 104 |
| abstract_inverted_index.dataset | 156 |
| abstract_inverted_index.develop | 19 |
| abstract_inverted_index.engines | 23 |
| abstract_inverted_index.improve | 67, 183 |
| abstract_inverted_index.model's | 69 |
| abstract_inverted_index.models. | 191 |
| abstract_inverted_index.optimal | 82, 137 |
| abstract_inverted_index.problem | 109 |
| abstract_inverted_index.samples | 65 |
| abstract_inverted_index.service | 5 |
| abstract_inverted_index.support | 177 |
| abstract_inverted_index.systems | 11 |
| abstract_inverted_index.airlines | 17 |
| abstract_inverted_index.aviation | 9 |
| abstract_inverted_index.dataset. | 148 |
| abstract_inverted_index.datasets | 61 |
| abstract_inverted_index.fidelity | 167 |
| abstract_inverted_index.generate | 56 |
| abstract_inverted_index.learning | 131, 190 |
| abstract_inverted_index.methods, | 79 |
| abstract_inverted_index.problems | 49 |
| abstract_inverted_index.proposes | 118 |
| abstract_inverted_index.provided | 157 |
| abstract_inverted_index.requires | 110 |
| abstract_inverted_index.strategy | 85, 98, 138 |
| abstract_inverted_index.suitable | 101 |
| abstract_inverted_index.training | 64 |
| abstract_inverted_index.accuracy. | 43 |
| abstract_inverted_index.addition, | 172 |
| abstract_inverted_index.automatic | 120, 125, 141 |
| abstract_inverted_index.conducted | 151 |
| abstract_inverted_index.different | 92 |
| abstract_inverted_index.direction | 45 |
| abstract_inverted_index.extensive | 114 |
| abstract_inverted_index.generated | 165, 174 |
| abstract_inverted_index.operating | 30 |
| abstract_inverted_index.parameter | 115 |
| abstract_inverted_index.remaining | 4, 105 |
| abstract_inverted_index.synthetic | 57 |
| abstract_inverted_index.Confirming | 94 |
| abstract_inverted_index.algorithms | 132 |
| abstract_inverted_index.conditions | 31 |
| abstract_inverted_index.experience | 112 |
| abstract_inverted_index.monitoring | 169 |
| abstract_inverted_index.prediction | 2, 42, 88, 108, 179 |
| abstract_inverted_index.predictive | 185 |
| abstract_inverted_index.underlying | 188 |
| abstract_inverted_index.demonstrate | 160 |
| abstract_inverted_index.effectively | 176 |
| abstract_inverted_index.experiments | 150 |
| abstract_inverted_index.maintenance | 20, 26 |
| abstract_inverted_index.situations. | 93 |
| abstract_inverted_index.augmentation | 78, 84, 97, 122 |
| abstract_inverted_index.insufficient | 36 |
| abstract_inverted_index.multivariate | 168 |
| abstract_inverted_index.significance | 15 |
| abstract_inverted_index.successfully | 164 |
| abstract_inverted_index.augmentation, | 52 |
| abstract_inverted_index.cost.However, | 27 |
| abstract_inverted_index.reinforcement | 130 |
| abstract_inverted_index.significantly | 182 |
| abstract_inverted_index.generalization | 70 |
| abstract_inverted_index.experiments.This | 116 |
| abstract_inverted_index.ability.Admittedly, | 71 |
| abstract_inverted_index.method(AdaRUL),Build | 123 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.19820957 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |