An Effective GAN-Based Multi-classification Approach for Financial Time Series Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1007/978-981-19-2456-9_110
Deep learning has achieved significant success in various applications due to its powerful feature representations of complex data. Financial time series forecasting is no exception. In this work we leverage Generative Adversarial Nets (GAN), which has been extensively studied recently, for the end-to-end multi-classification of financial time series. An improved generative model based on Convolutional Long Short-Term Memory (ConvLSTM) and Multi-Layer Perceptron (MLP) is proposed to effectively capture temporal features and mine the data distribution of volatility trends (short, neutral, and long) from given financial time series data. We empirically compare the proposed approach with state-of-the-art multi-classification methods on real-world stock dataset. The results show that the proposed GAN-based method outperforms its competitors in precision and F1 score.
Related Topics
- Type
- book-chapter
- Language
- en
- Landing Page
- https://doi.org/10.1007/978-981-19-2456-9_110
- https://link.springer.com/content/pdf/10.1007/978-981-19-2456-9_110.pdf
- OA Status
- hybrid
- Cited By
- 1
- References
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4285291056
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4285291056Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/978-981-19-2456-9_110Digital Object Identifier
- Title
-
An Effective GAN-Based Multi-classification Approach for Financial Time SeriesWork title
- Type
-
book-chapterOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
Lei Liu, Zheng Pei, Peng Chen, Zhisheng Gao, Zhihao Gan, Kang FengList of authors in order
- Landing page
-
https://doi.org/10.1007/978-981-19-2456-9_110Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/978-981-19-2456-9_110.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/978-981-19-2456-9_110.pdfDirect OA link when available
- Concepts
-
Leverage (statistics), Computer science, Artificial intelligence, Volatility (finance), Time series, Finance, Perceptron, Competitor analysis, Machine learning, Series (stratigraphy), Generative grammar, Long short term memory, Data mining, Pattern recognition (psychology), Artificial neural network, Recurrent neural network, Economics, Paleontology, Biology, ManagementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4285291056 |
|---|---|
| doi | https://doi.org/10.1007/978-981-19-2456-9_110 |
| ids.doi | https://doi.org/10.1007/978-981-19-2456-9_110 |
| ids.openalex | https://openalex.org/W4285291056 |
| fwci | 0.92606317 |
| type | book-chapter |
| title | An Effective GAN-Based Multi-classification Approach for Financial Time Series |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 1107 |
| biblio.first_page | 1100 |
| topics[0].id | https://openalex.org/T11326 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Stock Market Forecasting Methods |
| topics[1].id | https://openalex.org/T12205 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9993000030517578 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Time Series Analysis and Forecasting |
| topics[2].id | https://openalex.org/T11270 |
| topics[2].field.id | https://openalex.org/fields/20 |
| topics[2].field.display_name | Economics, Econometrics and Finance |
| topics[2].score | 0.9944000244140625 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2002 |
| topics[2].subfield.display_name | Economics and Econometrics |
| topics[2].display_name | Complex Systems and Time Series Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C153083717 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6438107490539551 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[0].display_name | Leverage (statistics) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.643183708190918 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5184980630874634 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C91602232 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4954308271408081 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q756115 |
| concepts[3].display_name | Volatility (finance) |
| concepts[4].id | https://openalex.org/C151406439 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4690437912940979 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[4].display_name | Time series |
| concepts[5].id | https://openalex.org/C10138342 |
| concepts[5].level | 1 |
| concepts[5].score | 0.45458802580833435 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[5].display_name | Finance |
| concepts[6].id | https://openalex.org/C60908668 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4518239200115204 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q690207 |
| concepts[6].display_name | Perceptron |
| concepts[7].id | https://openalex.org/C127576917 |
| concepts[7].level | 2 |
| concepts[7].score | 0.443930447101593 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q624630 |
| concepts[7].display_name | Competitor analysis |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.43112921714782715 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C143724316 |
| concepts[9].level | 2 |
| concepts[9].score | 0.429911732673645 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[9].display_name | Series (stratigraphy) |
| concepts[10].id | https://openalex.org/C39890363 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41590720415115356 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[10].display_name | Generative grammar |
| concepts[11].id | https://openalex.org/C133488467 |
| concepts[11].level | 4 |
| concepts[11].score | 0.4138599634170532 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q6673524 |
| concepts[11].display_name | Long short term memory |
| concepts[12].id | https://openalex.org/C124101348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.40178799629211426 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[12].display_name | Data mining |
| concepts[13].id | https://openalex.org/C153180895 |
| concepts[13].level | 2 |
| concepts[13].score | 0.338657021522522 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[13].display_name | Pattern recognition (psychology) |
| concepts[14].id | https://openalex.org/C50644808 |
| concepts[14].level | 2 |
| concepts[14].score | 0.32991647720336914 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[14].display_name | Artificial neural network |
| concepts[15].id | https://openalex.org/C147168706 |
| concepts[15].level | 3 |
| concepts[15].score | 0.20234698057174683 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[15].display_name | Recurrent neural network |
| concepts[16].id | https://openalex.org/C162324750 |
| concepts[16].level | 0 |
| concepts[16].score | 0.07344397902488708 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[16].display_name | Economics |
| concepts[17].id | https://openalex.org/C151730666 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[17].display_name | Paleontology |
| concepts[18].id | https://openalex.org/C86803240 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[18].display_name | Biology |
| concepts[19].id | https://openalex.org/C187736073 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[19].display_name | Management |
| keywords[0].id | https://openalex.org/keywords/leverage |
| keywords[0].score | 0.6438107490539551 |
| keywords[0].display_name | Leverage (statistics) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.643183708190918 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5184980630874634 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/volatility |
| keywords[3].score | 0.4954308271408081 |
| keywords[3].display_name | Volatility (finance) |
| keywords[4].id | https://openalex.org/keywords/time-series |
| keywords[4].score | 0.4690437912940979 |
| keywords[4].display_name | Time series |
| keywords[5].id | https://openalex.org/keywords/finance |
| keywords[5].score | 0.45458802580833435 |
| keywords[5].display_name | Finance |
| keywords[6].id | https://openalex.org/keywords/perceptron |
| keywords[6].score | 0.4518239200115204 |
| keywords[6].display_name | Perceptron |
| keywords[7].id | https://openalex.org/keywords/competitor-analysis |
| keywords[7].score | 0.443930447101593 |
| keywords[7].display_name | Competitor analysis |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.43112921714782715 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/series |
| keywords[9].score | 0.429911732673645 |
| keywords[9].display_name | Series (stratigraphy) |
| keywords[10].id | https://openalex.org/keywords/generative-grammar |
| keywords[10].score | 0.41590720415115356 |
| keywords[10].display_name | Generative grammar |
| keywords[11].id | https://openalex.org/keywords/long-short-term-memory |
| keywords[11].score | 0.4138599634170532 |
| keywords[11].display_name | Long short term memory |
| keywords[12].id | https://openalex.org/keywords/data-mining |
| keywords[12].score | 0.40178799629211426 |
| keywords[12].display_name | Data mining |
| keywords[13].id | https://openalex.org/keywords/pattern-recognition |
| keywords[13].score | 0.338657021522522 |
| keywords[13].display_name | Pattern recognition (psychology) |
| keywords[14].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[14].score | 0.32991647720336914 |
| keywords[14].display_name | Artificial neural network |
| keywords[15].id | https://openalex.org/keywords/recurrent-neural-network |
| keywords[15].score | 0.20234698057174683 |
| keywords[15].display_name | Recurrent neural network |
| keywords[16].id | https://openalex.org/keywords/economics |
| keywords[16].score | 0.07344397902488708 |
| keywords[16].display_name | Economics |
| language | en |
| locations[0].id | doi:10.1007/978-981-19-2456-9_110 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210179954 |
| locations[0].source.issn | 1876-1100, 1876-1119 |
| locations[0].source.type | book series |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1876-1100 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Lecture notes in electrical engineering |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/978-981-19-2456-9_110.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | book-chapter |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Lecture Notes in Electrical Engineering |
| locations[0].landing_page_url | https://doi.org/10.1007/978-981-19-2456-9_110 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5016223927 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1708-1818 |
| authorships[0].author.display_name | Lei Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I102345215 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer and Software Engineering, Xihua University, Chengdu, China |
| authorships[0].institutions[0].id | https://openalex.org/I102345215 |
| authorships[0].institutions[0].ror | https://ror.org/04gwtvf26 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I102345215 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xihua University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lei Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer and Software Engineering, Xihua University, Chengdu, China |
| authorships[1].author.id | https://openalex.org/A5046280013 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5757-6607 |
| authorships[1].author.display_name | Zheng Pei |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I102345215 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer and Software Engineering, Xihua University, Chengdu, China |
| authorships[1].institutions[0].id | https://openalex.org/I102345215 |
| authorships[1].institutions[0].ror | https://ror.org/04gwtvf26 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I102345215 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xihua University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zheng Pei |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer and Software Engineering, Xihua University, Chengdu, China |
| authorships[2].author.id | https://openalex.org/A5100338429 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5221-3655 |
| authorships[2].author.display_name | Peng Chen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I102345215 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer and Software Engineering, Xihua University, Chengdu, China |
| authorships[2].institutions[0].id | https://openalex.org/I102345215 |
| authorships[2].institutions[0].ror | https://ror.org/04gwtvf26 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I102345215 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Xihua University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Peng Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer and Software Engineering, Xihua University, Chengdu, China |
| authorships[3].author.id | https://openalex.org/A5089240137 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0470-8861 |
| authorships[3].author.display_name | Zhisheng Gao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I102345215 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer and Software Engineering, Xihua University, Chengdu, China |
| authorships[3].institutions[0].id | https://openalex.org/I102345215 |
| authorships[3].institutions[0].ror | https://ror.org/04gwtvf26 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I102345215 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Xihua University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhisheng Gao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer and Software Engineering, Xihua University, Chengdu, China |
| authorships[4].author.id | https://openalex.org/A5085380334 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8512-7809 |
| authorships[4].author.display_name | Zhihao Gan |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I102345215 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Computer and Software Engineering, Xihua University, Chengdu, China |
| authorships[4].institutions[0].id | https://openalex.org/I102345215 |
| authorships[4].institutions[0].ror | https://ror.org/04gwtvf26 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I102345215 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Xihua University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhihao Gan |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Computer and Software Engineering, Xihua University, Chengdu, China |
| authorships[5].author.id | https://openalex.org/A5084991935 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8446-646X |
| authorships[5].author.display_name | Kang Feng |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I102345215 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Computer and Software Engineering, Xihua University, Chengdu, China |
| authorships[5].institutions[0].id | https://openalex.org/I102345215 |
| authorships[5].institutions[0].ror | https://ror.org/04gwtvf26 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I102345215 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Xihua University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Kang Feng |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Computer and Software Engineering, Xihua University, Chengdu, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/978-981-19-2456-9_110.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Effective GAN-Based Multi-classification Approach for Financial Time Series |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11326 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Stock Market Forecasting Methods |
| related_works | https://openalex.org/W2242271381, https://openalex.org/W2378555542, https://openalex.org/W4245248941, https://openalex.org/W2357809648, https://openalex.org/W2990514669, https://openalex.org/W3106494386, https://openalex.org/W2381421930, https://openalex.org/W1501213224, https://openalex.org/W2393723963, https://openalex.org/W4231994957 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/978-981-19-2456-9_110 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210179954 |
| best_oa_location.source.issn | 1876-1100, 1876-1119 |
| best_oa_location.source.type | book series |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1876-1100 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Lecture notes in electrical engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/978-981-19-2456-9_110.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | book-chapter |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Lecture Notes in Electrical Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1007/978-981-19-2456-9_110 |
| primary_location.id | doi:10.1007/978-981-19-2456-9_110 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210179954 |
| primary_location.source.issn | 1876-1100, 1876-1119 |
| primary_location.source.type | book series |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1876-1100 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Lecture notes in electrical engineering |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/978-981-19-2456-9_110.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | book-chapter |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Lecture Notes in Electrical Engineering |
| primary_location.landing_page_url | https://doi.org/10.1007/978-981-19-2456-9_110 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3024647574, https://openalex.org/W3007066689, https://openalex.org/W2572310613, https://openalex.org/W2070808135, https://openalex.org/W2555077524, https://openalex.org/W2039260438, https://openalex.org/W2754051771, https://openalex.org/W1973058638, https://openalex.org/W119403003, https://openalex.org/W2958098628, https://openalex.org/W2912614123, https://openalex.org/W2025053102 |
| referenced_works_count | 12 |
| abstract_inverted_index.An | 49 |
| abstract_inverted_index.F1 | 117 |
| abstract_inverted_index.In | 26 |
| abstract_inverted_index.We | 89 |
| abstract_inverted_index.in | 7, 114 |
| abstract_inverted_index.is | 23, 64 |
| abstract_inverted_index.no | 24 |
| abstract_inverted_index.of | 16, 45, 76 |
| abstract_inverted_index.on | 54, 99 |
| abstract_inverted_index.to | 11, 66 |
| abstract_inverted_index.we | 29 |
| abstract_inverted_index.The | 103 |
| abstract_inverted_index.and | 60, 71, 81, 116 |
| abstract_inverted_index.due | 10 |
| abstract_inverted_index.for | 41 |
| abstract_inverted_index.has | 3, 36 |
| abstract_inverted_index.its | 12, 112 |
| abstract_inverted_index.the | 42, 73, 92, 107 |
| abstract_inverted_index.Deep | 1 |
| abstract_inverted_index.Long | 56 |
| abstract_inverted_index.Nets | 33 |
| abstract_inverted_index.been | 37 |
| abstract_inverted_index.data | 74 |
| abstract_inverted_index.from | 83 |
| abstract_inverted_index.mine | 72 |
| abstract_inverted_index.show | 105 |
| abstract_inverted_index.that | 106 |
| abstract_inverted_index.this | 27 |
| abstract_inverted_index.time | 20, 47, 86 |
| abstract_inverted_index.with | 95 |
| abstract_inverted_index.work | 28 |
| abstract_inverted_index.(MLP) | 63 |
| abstract_inverted_index.based | 53 |
| abstract_inverted_index.data. | 18, 88 |
| abstract_inverted_index.given | 84 |
| abstract_inverted_index.long) | 82 |
| abstract_inverted_index.model | 52 |
| abstract_inverted_index.stock | 101 |
| abstract_inverted_index.which | 35 |
| abstract_inverted_index.(GAN), | 34 |
| abstract_inverted_index.Memory | 58 |
| abstract_inverted_index.method | 110 |
| abstract_inverted_index.score. | 118 |
| abstract_inverted_index.series | 21, 87 |
| abstract_inverted_index.trends | 78 |
| abstract_inverted_index.(short, | 79 |
| abstract_inverted_index.capture | 68 |
| abstract_inverted_index.compare | 91 |
| abstract_inverted_index.complex | 17 |
| abstract_inverted_index.feature | 14 |
| abstract_inverted_index.methods | 98 |
| abstract_inverted_index.results | 104 |
| abstract_inverted_index.series. | 48 |
| abstract_inverted_index.studied | 39 |
| abstract_inverted_index.success | 6 |
| abstract_inverted_index.various | 8 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.achieved | 4 |
| abstract_inverted_index.approach | 94 |
| abstract_inverted_index.dataset. | 102 |
| abstract_inverted_index.features | 70 |
| abstract_inverted_index.improved | 50 |
| abstract_inverted_index.learning | 2 |
| abstract_inverted_index.leverage | 30 |
| abstract_inverted_index.neutral, | 80 |
| abstract_inverted_index.powerful | 13 |
| abstract_inverted_index.proposed | 65, 93, 108 |
| abstract_inverted_index.temporal | 69 |
| abstract_inverted_index.Financial | 19 |
| abstract_inverted_index.GAN-based | 109 |
| abstract_inverted_index.financial | 46, 85 |
| abstract_inverted_index.precision | 115 |
| abstract_inverted_index.recently, | 40 |
| abstract_inverted_index.(ConvLSTM) | 59 |
| abstract_inverted_index.Generative | 31 |
| abstract_inverted_index.Perceptron | 62 |
| abstract_inverted_index.Short-Term | 57 |
| abstract_inverted_index.end-to-end | 43 |
| abstract_inverted_index.exception. | 25 |
| abstract_inverted_index.generative | 51 |
| abstract_inverted_index.real-world | 100 |
| abstract_inverted_index.volatility | 77 |
| abstract_inverted_index.Adversarial | 32 |
| abstract_inverted_index.Multi-Layer | 61 |
| abstract_inverted_index.competitors | 113 |
| abstract_inverted_index.effectively | 67 |
| abstract_inverted_index.empirically | 90 |
| abstract_inverted_index.extensively | 38 |
| abstract_inverted_index.forecasting | 22 |
| abstract_inverted_index.outperforms | 111 |
| abstract_inverted_index.significant | 5 |
| abstract_inverted_index.applications | 9 |
| abstract_inverted_index.distribution | 75 |
| abstract_inverted_index.Convolutional | 55 |
| abstract_inverted_index.representations | 15 |
| abstract_inverted_index.state-of-the-art | 96 |
| abstract_inverted_index.multi-classification | 44, 97 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.72411215 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |