An Efficient Algorithm For Generalized Linear Bandit: Online Stochastic Gradient Descent and Thompson Sampling Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2006.04012
We consider the contextual bandit problem, where a player sequentially makes decisions based on past observations to maximize the cumulative reward. Although many algorithms have been proposed for contextual bandit, most of them rely on finding the maximum likelihood estimator at each iteration, which requires $O(t)$ time at the $t$-th iteration and are memory inefficient. A natural way to resolve this problem is to apply online stochastic gradient descent (SGD) so that the per-step time and memory complexity can be reduced to constant with respect to $t$, but a contextual bandit policy based on online SGD updates that balances exploration and exploitation has remained elusive. In this work, we show that online SGD can be applied to the generalized linear bandit problem. The proposed SGD-TS algorithm, which uses a single-step SGD update to exploit past information and uses Thompson Sampling for exploration, achieves $\tilde{O}(\sqrt{T})$ regret with the total time complexity that scales linearly in $T$ and $d$, where $T$ is the total number of rounds and $d$ is the number of features. Experimental results show that SGD-TS consistently outperforms existing algorithms on both synthetic and real datasets.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2006.04012
- https://arxiv.org/pdf/2006.04012
- OA Status
- green
- Cited By
- 8
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3034051564
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3034051564Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2006.04012Digital Object Identifier
- Title
-
An Efficient Algorithm For Generalized Linear Bandit: Online Stochastic Gradient Descent and Thompson SamplingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-06-07Full publication date if available
- Authors
-
Qin Ding, Cho‐Jui Hsieh, James SharpnackList of authors in order
- Landing page
-
https://arxiv.org/abs/2006.04012Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2006.04012Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2006.04012Direct OA link when available
- Concepts
-
Regret, Thompson sampling, Stochastic gradient descent, Estimator, Computer science, Constant (computer programming), Algorithm, Sampling (signal processing), Online algorithm, Streaming algorithm, Gradient descent, Tilde, Time complexity, Mathematical optimization, Mathematics, Artificial intelligence, Machine learning, Upper and lower bounds, Discrete mathematics, Statistics, Artificial neural network, Programming language, Mathematical analysis, Filter (signal processing), Computer visionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 3, 2023: 1, 2022: 3Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3034051564 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2006.04012 |
| ids.doi | https://doi.org/10.48550/arxiv.2006.04012 |
| ids.mag | 3034051564 |
| ids.openalex | https://openalex.org/W3034051564 |
| fwci | |
| type | preprint |
| title | An Efficient Algorithm For Generalized Linear Bandit: Online Stochastic Gradient Descent and Thompson Sampling |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12101 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Advanced Bandit Algorithms Research |
| topics[1].id | https://openalex.org/T10462 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9952999949455261 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Reinforcement Learning in Robotics |
| topics[2].id | https://openalex.org/T11612 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9914000034332275 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Stochastic Gradient Optimization Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C50817715 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8172674179077148 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q79895177 |
| concepts[0].display_name | Regret |
| concepts[1].id | https://openalex.org/C73602740 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6604717969894409 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7795822 |
| concepts[1].display_name | Thompson sampling |
| concepts[2].id | https://openalex.org/C206688291 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6368503570556641 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7617819 |
| concepts[2].display_name | Stochastic gradient descent |
| concepts[3].id | https://openalex.org/C185429906 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6167234778404236 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[3].display_name | Estimator |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.6127270460128784 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C2777027219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5503055453300476 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1284190 |
| concepts[5].display_name | Constant (computer programming) |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5223868489265442 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C140779682 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5100034475326538 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[7].display_name | Sampling (signal processing) |
| concepts[8].id | https://openalex.org/C196921405 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4793553948402405 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q786431 |
| concepts[8].display_name | Online algorithm |
| concepts[9].id | https://openalex.org/C187166803 |
| concepts[9].level | 3 |
| concepts[9].score | 0.47749918699264526 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2835831 |
| concepts[9].display_name | Streaming algorithm |
| concepts[10].id | https://openalex.org/C153258448 |
| concepts[10].level | 3 |
| concepts[10].score | 0.46380141377449036 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1199743 |
| concepts[10].display_name | Gradient descent |
| concepts[11].id | https://openalex.org/C36686422 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4511987566947937 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11167 |
| concepts[11].display_name | Tilde |
| concepts[12].id | https://openalex.org/C311688 |
| concepts[12].level | 2 |
| concepts[12].score | 0.42206865549087524 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2393193 |
| concepts[12].display_name | Time complexity |
| concepts[13].id | https://openalex.org/C126255220 |
| concepts[13].level | 1 |
| concepts[13].score | 0.40234190225601196 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[13].display_name | Mathematical optimization |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.3514803647994995 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C154945302 |
| concepts[15].level | 1 |
| concepts[15].score | 0.2871086001396179 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[15].display_name | Artificial intelligence |
| concepts[16].id | https://openalex.org/C119857082 |
| concepts[16].level | 1 |
| concepts[16].score | 0.2068708837032318 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[16].display_name | Machine learning |
| concepts[17].id | https://openalex.org/C77553402 |
| concepts[17].level | 2 |
| concepts[17].score | 0.18513381481170654 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q13222579 |
| concepts[17].display_name | Upper and lower bounds |
| concepts[18].id | https://openalex.org/C118615104 |
| concepts[18].level | 1 |
| concepts[18].score | 0.17220216989517212 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[18].display_name | Discrete mathematics |
| concepts[19].id | https://openalex.org/C105795698 |
| concepts[19].level | 1 |
| concepts[19].score | 0.12193098664283752 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[19].display_name | Statistics |
| concepts[20].id | https://openalex.org/C50644808 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[20].display_name | Artificial neural network |
| concepts[21].id | https://openalex.org/C199360897 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[21].display_name | Programming language |
| concepts[22].id | https://openalex.org/C134306372 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[22].display_name | Mathematical analysis |
| concepts[23].id | https://openalex.org/C106131492 |
| concepts[23].level | 2 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[23].display_name | Filter (signal processing) |
| concepts[24].id | https://openalex.org/C31972630 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[24].display_name | Computer vision |
| keywords[0].id | https://openalex.org/keywords/regret |
| keywords[0].score | 0.8172674179077148 |
| keywords[0].display_name | Regret |
| keywords[1].id | https://openalex.org/keywords/thompson-sampling |
| keywords[1].score | 0.6604717969894409 |
| keywords[1].display_name | Thompson sampling |
| keywords[2].id | https://openalex.org/keywords/stochastic-gradient-descent |
| keywords[2].score | 0.6368503570556641 |
| keywords[2].display_name | Stochastic gradient descent |
| keywords[3].id | https://openalex.org/keywords/estimator |
| keywords[3].score | 0.6167234778404236 |
| keywords[3].display_name | Estimator |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.6127270460128784 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/constant |
| keywords[5].score | 0.5503055453300476 |
| keywords[5].display_name | Constant (computer programming) |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.5223868489265442 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/sampling |
| keywords[7].score | 0.5100034475326538 |
| keywords[7].display_name | Sampling (signal processing) |
| keywords[8].id | https://openalex.org/keywords/online-algorithm |
| keywords[8].score | 0.4793553948402405 |
| keywords[8].display_name | Online algorithm |
| keywords[9].id | https://openalex.org/keywords/streaming-algorithm |
| keywords[9].score | 0.47749918699264526 |
| keywords[9].display_name | Streaming algorithm |
| keywords[10].id | https://openalex.org/keywords/gradient-descent |
| keywords[10].score | 0.46380141377449036 |
| keywords[10].display_name | Gradient descent |
| keywords[11].id | https://openalex.org/keywords/tilde |
| keywords[11].score | 0.4511987566947937 |
| keywords[11].display_name | Tilde |
| keywords[12].id | https://openalex.org/keywords/time-complexity |
| keywords[12].score | 0.42206865549087524 |
| keywords[12].display_name | Time complexity |
| keywords[13].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[13].score | 0.40234190225601196 |
| keywords[13].display_name | Mathematical optimization |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.3514803647994995 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[15].score | 0.2871086001396179 |
| keywords[15].display_name | Artificial intelligence |
| keywords[16].id | https://openalex.org/keywords/machine-learning |
| keywords[16].score | 0.2068708837032318 |
| keywords[16].display_name | Machine learning |
| keywords[17].id | https://openalex.org/keywords/upper-and-lower-bounds |
| keywords[17].score | 0.18513381481170654 |
| keywords[17].display_name | Upper and lower bounds |
| keywords[18].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[18].score | 0.17220216989517212 |
| keywords[18].display_name | Discrete mathematics |
| keywords[19].id | https://openalex.org/keywords/statistics |
| keywords[19].score | 0.12193098664283752 |
| keywords[19].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2006.04012 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2006.04012 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2006.04012 |
| locations[1].id | doi:10.48550/arxiv.2006.04012 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2006.04012 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5075602398 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-0988-8126 |
| authorships[0].author.display_name | Qin Ding |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I84218800 |
| authorships[0].affiliations[0].raw_affiliation_string | Univ. of California Davis |
| authorships[0].institutions[0].id | https://openalex.org/I84218800 |
| authorships[0].institutions[0].ror | https://ror.org/05rrcem69 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I84218800 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of California, Davis |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qin Ding |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Univ. of California Davis |
| authorships[1].author.id | https://openalex.org/A5010841999 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3520-9627 |
| authorships[1].author.display_name | Cho‐Jui Hsieh |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[1].affiliations[0].raw_affiliation_string | University of California-Los Angeles |
| authorships[1].institutions[0].id | https://openalex.org/I161318765 |
| authorships[1].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of California, Los Angeles |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Cho-Jui Hsieh |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of California-Los Angeles |
| authorships[2].author.id | https://openalex.org/A5023062037 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7193-0972 |
| authorships[2].author.display_name | James Sharpnack |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I84218800 |
| authorships[2].affiliations[0].raw_affiliation_string | Univ. of California Davis |
| authorships[2].institutions[0].id | https://openalex.org/I84218800 |
| authorships[2].institutions[0].ror | https://ror.org/05rrcem69 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I84218800 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of California, Davis |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | James Sharpnack |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Univ. of California Davis |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2006.04012 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2020-06-12T00:00:00 |
| display_name | An Efficient Algorithm For Generalized Linear Bandit: Online Stochastic Gradient Descent and Thompson Sampling |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12101 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Advanced Bandit Algorithms Research |
| related_works | https://openalex.org/W4299286629, https://openalex.org/W2953231921, https://openalex.org/W4287280893, https://openalex.org/W3134727623, https://openalex.org/W2995987536, https://openalex.org/W3089431405, https://openalex.org/W4287990693, https://openalex.org/W4283208760, https://openalex.org/W3159159325, https://openalex.org/W4298151448 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2006.04012 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2006.04012 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2006.04012 |
| primary_location.id | pmh:oai:arXiv.org:2006.04012 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2006.04012 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2006.04012 |
| publication_date | 2020-06-07 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2186512312, https://openalex.org/W2106164082, https://openalex.org/W2963661728, https://openalex.org/W2112420033, https://openalex.org/W2065398693, https://openalex.org/W3040219874, https://openalex.org/W2166253248, https://openalex.org/W1911551976, https://openalex.org/W2055150024, https://openalex.org/W2963271096, https://openalex.org/W3037983390, https://openalex.org/W2108738385, https://openalex.org/W2964035670, https://openalex.org/W3121632328, https://openalex.org/W1487320471, https://openalex.org/W2801179766, https://openalex.org/W2119738618, https://openalex.org/W2592998600, https://openalex.org/W2773557179, https://openalex.org/W2160163723, https://openalex.org/W2786227661, https://openalex.org/W3044872185, https://openalex.org/W2039522160, https://openalex.org/W2168405694, https://openalex.org/W2966101885, https://openalex.org/W2964124625, https://openalex.org/W2807644309, https://openalex.org/W2964330179, https://openalex.org/W3010113449, https://openalex.org/W2513180554, https://openalex.org/W50486269 |
| referenced_works_count | 31 |
| abstract_inverted_index.A | 55 |
| abstract_inverted_index.a | 7, 88, 128 |
| abstract_inverted_index.In | 105 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.at | 40, 47 |
| abstract_inverted_index.be | 79, 114 |
| abstract_inverted_index.in | 153 |
| abstract_inverted_index.is | 62, 159, 167 |
| abstract_inverted_index.of | 31, 163, 170 |
| abstract_inverted_index.on | 13, 34, 93, 181 |
| abstract_inverted_index.so | 70 |
| abstract_inverted_index.to | 16, 58, 63, 81, 85, 116, 132 |
| abstract_inverted_index.we | 108 |
| abstract_inverted_index.$T$ | 154, 158 |
| abstract_inverted_index.$d$ | 166 |
| abstract_inverted_index.SGD | 95, 112, 130 |
| abstract_inverted_index.The | 122 |
| abstract_inverted_index.and | 51, 75, 100, 136, 155, 165, 184 |
| abstract_inverted_index.are | 52 |
| abstract_inverted_index.but | 87 |
| abstract_inverted_index.can | 78, 113 |
| abstract_inverted_index.for | 27, 140 |
| abstract_inverted_index.has | 102 |
| abstract_inverted_index.the | 2, 18, 36, 48, 72, 117, 146, 160, 168 |
| abstract_inverted_index.way | 57 |
| abstract_inverted_index.$d$, | 156 |
| abstract_inverted_index.$t$, | 86 |
| abstract_inverted_index.been | 25 |
| abstract_inverted_index.both | 182 |
| abstract_inverted_index.each | 41 |
| abstract_inverted_index.have | 24 |
| abstract_inverted_index.many | 22 |
| abstract_inverted_index.most | 30 |
| abstract_inverted_index.past | 14, 134 |
| abstract_inverted_index.real | 185 |
| abstract_inverted_index.rely | 33 |
| abstract_inverted_index.show | 109, 174 |
| abstract_inverted_index.that | 71, 97, 110, 150, 175 |
| abstract_inverted_index.them | 32 |
| abstract_inverted_index.this | 60, 106 |
| abstract_inverted_index.time | 46, 74, 148 |
| abstract_inverted_index.uses | 127, 137 |
| abstract_inverted_index.with | 83, 145 |
| abstract_inverted_index.(SGD) | 69 |
| abstract_inverted_index.apply | 64 |
| abstract_inverted_index.based | 12, 92 |
| abstract_inverted_index.makes | 10 |
| abstract_inverted_index.total | 147, 161 |
| abstract_inverted_index.where | 6, 157 |
| abstract_inverted_index.which | 43, 126 |
| abstract_inverted_index.work, | 107 |
| abstract_inverted_index.$O(t)$ | 45 |
| abstract_inverted_index.$t$-th | 49 |
| abstract_inverted_index.SGD-TS | 124, 176 |
| abstract_inverted_index.bandit | 4, 90, 120 |
| abstract_inverted_index.linear | 119 |
| abstract_inverted_index.memory | 53, 76 |
| abstract_inverted_index.number | 162, 169 |
| abstract_inverted_index.online | 65, 94, 111 |
| abstract_inverted_index.player | 8 |
| abstract_inverted_index.policy | 91 |
| abstract_inverted_index.regret | 144 |
| abstract_inverted_index.rounds | 164 |
| abstract_inverted_index.scales | 151 |
| abstract_inverted_index.update | 131 |
| abstract_inverted_index.applied | 115 |
| abstract_inverted_index.bandit, | 29 |
| abstract_inverted_index.descent | 68 |
| abstract_inverted_index.exploit | 133 |
| abstract_inverted_index.finding | 35 |
| abstract_inverted_index.maximum | 37 |
| abstract_inverted_index.natural | 56 |
| abstract_inverted_index.problem | 61 |
| abstract_inverted_index.reduced | 80 |
| abstract_inverted_index.resolve | 59 |
| abstract_inverted_index.respect | 84 |
| abstract_inverted_index.results | 173 |
| abstract_inverted_index.reward. | 20 |
| abstract_inverted_index.updates | 96 |
| abstract_inverted_index.Although | 21 |
| abstract_inverted_index.Sampling | 139 |
| abstract_inverted_index.Thompson | 138 |
| abstract_inverted_index.achieves | 142 |
| abstract_inverted_index.balances | 98 |
| abstract_inverted_index.consider | 1 |
| abstract_inverted_index.constant | 82 |
| abstract_inverted_index.elusive. | 104 |
| abstract_inverted_index.existing | 179 |
| abstract_inverted_index.gradient | 67 |
| abstract_inverted_index.linearly | 152 |
| abstract_inverted_index.maximize | 17 |
| abstract_inverted_index.per-step | 73 |
| abstract_inverted_index.problem, | 5 |
| abstract_inverted_index.problem. | 121 |
| abstract_inverted_index.proposed | 26, 123 |
| abstract_inverted_index.remained | 103 |
| abstract_inverted_index.requires | 44 |
| abstract_inverted_index.datasets. | 186 |
| abstract_inverted_index.decisions | 11 |
| abstract_inverted_index.estimator | 39 |
| abstract_inverted_index.features. | 171 |
| abstract_inverted_index.iteration | 50 |
| abstract_inverted_index.synthetic | 183 |
| abstract_inverted_index.algorithm, | 125 |
| abstract_inverted_index.algorithms | 23, 180 |
| abstract_inverted_index.complexity | 77, 149 |
| abstract_inverted_index.contextual | 3, 28, 89 |
| abstract_inverted_index.cumulative | 19 |
| abstract_inverted_index.iteration, | 42 |
| abstract_inverted_index.likelihood | 38 |
| abstract_inverted_index.stochastic | 66 |
| abstract_inverted_index.exploration | 99 |
| abstract_inverted_index.generalized | 118 |
| abstract_inverted_index.information | 135 |
| abstract_inverted_index.outperforms | 178 |
| abstract_inverted_index.single-step | 129 |
| abstract_inverted_index.Experimental | 172 |
| abstract_inverted_index.consistently | 177 |
| abstract_inverted_index.exploitation | 101 |
| abstract_inverted_index.exploration, | 141 |
| abstract_inverted_index.inefficient. | 54 |
| abstract_inverted_index.observations | 15 |
| abstract_inverted_index.sequentially | 9 |
| abstract_inverted_index.$\tilde{O}(\sqrt{T})$ | 143 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |