An Efficient and Fast Model Reduced Kernel KNN for Human Activity Recognition Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1155/2021/2026895
With accumulation of data and development of artificial intelligence, human activity recognition attracts lots of attention from researchers. Many classic machine learning algorithms, such as artificial neural network, feed forward neural network, K-nearest neighbors, and support vector machine, achieve good performance for detecting human activity. However, these algorithms have their own limitations and their prediction accuracy still has space to improve. In this study, we focus on K-nearest neighbors (KNN) and solve its limitations. Firstly, kernel method is employed in model KNN, which transforms the input features to be the high-dimensional features. The proposed model KNN with kernel (K-KNN) improves the accuracy of classification. Secondly, a novel reduced kernel method is proposed and used in model K-KNN, which is named as Reduced Kernel KNN (RK-KNN). It reduces the processing time and enhances the classification performance. Moreover, this study proposes an approach of defining number of K neighbors, which reduces the parameter dependency problem. Based on the experimental works, the proposed RK-KNN obtains the best performance in benchmarks and human activity datasets compared with other models. It has super classification ability in human activity recognition. The accuracy of human activity data is 91.60% for HAPT and 92.67% for Smartphone, respectively. Averagely, compared with the conventional KNN, the proposed model RK-KNN increases the accuracy by 1.82% and decreases standard deviation by 0.27. The small gap of processing time between KNN and RK-KNN in all datasets is only 1.26 seconds.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2021/2026895
- https://downloads.hindawi.com/journals/jat/2021/2026895.pdf
- OA Status
- gold
- Cited By
- 20
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3169408724
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3169408724Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2021/2026895Digital Object Identifier
- Title
-
An Efficient and Fast Model Reduced Kernel KNN for Human Activity RecognitionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-06-02Full publication date if available
- Authors
-
Zongying Liu, Shaoxi Li, Jiangling Hao, Jingfeng Hu, Mingyang PanList of authors in order
- Landing page
-
https://doi.org/10.1155/2021/2026895Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/jat/2021/2026895.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/jat/2021/2026895.pdfDirect OA link when available
- Concepts
-
Artificial intelligence, Computer science, k-nearest neighbors algorithm, Kernel (algebra), Support vector machine, Artificial neural network, Pattern recognition (psychology), Radial basis function kernel, Machine learning, Standard deviation, Kernel method, Data mining, Mathematics, Statistics, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
20Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 5, 2023: 5, 2022: 4Per-year citation counts (last 5 years)
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3169408724 |
|---|---|
| doi | https://doi.org/10.1155/2021/2026895 |
| ids.doi | https://doi.org/10.1155/2021/2026895 |
| ids.mag | 3169408724 |
| ids.openalex | https://openalex.org/W3169408724 |
| fwci | 1.43107271 |
| type | article |
| title | An Efficient and Fast Model Reduced Kernel KNN for Human Activity Recognition |
| awards[0].id | https://openalex.org/G3074042318 |
| awards[0].funder_id | https://openalex.org/F4320335787 |
| awards[0].display_name | |
| awards[0].funder_award_id | 3132019400 |
| awards[0].funder_display_name | Fundamental Research Funds for the Central Universities |
| awards[1].id | https://openalex.org/G5938442753 |
| awards[1].funder_id | https://openalex.org/F4320335787 |
| awards[1].display_name | |
| awards[1].funder_award_id | 02500119 |
| awards[1].funder_display_name | Fundamental Research Funds for the Central Universities |
| biblio.issue | |
| biblio.volume | 2021 |
| biblio.last_page | 9 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10444 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9951000213623047 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Context-Aware Activity Recognition Systems |
| topics[1].id | https://openalex.org/T11396 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9860000014305115 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3605 |
| topics[1].subfield.display_name | Health Information Management |
| topics[1].display_name | Artificial Intelligence in Healthcare |
| topics[2].id | https://openalex.org/T12761 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9797999858856201 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Data Stream Mining Techniques |
| funders[0].id | https://openalex.org/F4320335787 |
| funders[0].ror | |
| funders[0].display_name | Fundamental Research Funds for the Central Universities |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | USD |
| apc_list.value_usd | 2400 |
| apc_paid.value | 2400 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2400 |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.740971028804779 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7277348041534424 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C113238511 |
| concepts[2].level | 2 |
| concepts[2].score | 0.675039529800415 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1071612 |
| concepts[2].display_name | k-nearest neighbors algorithm |
| concepts[3].id | https://openalex.org/C74193536 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6724251508712769 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[3].display_name | Kernel (algebra) |
| concepts[4].id | https://openalex.org/C12267149 |
| concepts[4].level | 2 |
| concepts[4].score | 0.638996958732605 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[4].display_name | Support vector machine |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5983903408050537 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5899488925933838 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C75866337 |
| concepts[7].level | 4 |
| concepts[7].score | 0.4589167535305023 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7280263 |
| concepts[7].display_name | Radial basis function kernel |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4458787143230438 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C22679943 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41230854392051697 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q159375 |
| concepts[9].display_name | Standard deviation |
| concepts[10].id | https://openalex.org/C122280245 |
| concepts[10].level | 3 |
| concepts[10].score | 0.39246395230293274 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q620622 |
| concepts[10].display_name | Kernel method |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3461662530899048 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.14746561646461487 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0714617371559143 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C114614502 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[14].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.740971028804779 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7277348041534424 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/k-nearest-neighbors-algorithm |
| keywords[2].score | 0.675039529800415 |
| keywords[2].display_name | k-nearest neighbors algorithm |
| keywords[3].id | https://openalex.org/keywords/kernel |
| keywords[3].score | 0.6724251508712769 |
| keywords[3].display_name | Kernel (algebra) |
| keywords[4].id | https://openalex.org/keywords/support-vector-machine |
| keywords[4].score | 0.638996958732605 |
| keywords[4].display_name | Support vector machine |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.5983903408050537 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.5899488925933838 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/radial-basis-function-kernel |
| keywords[7].score | 0.4589167535305023 |
| keywords[7].display_name | Radial basis function kernel |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.4458787143230438 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/standard-deviation |
| keywords[9].score | 0.41230854392051697 |
| keywords[9].display_name | Standard deviation |
| keywords[10].id | https://openalex.org/keywords/kernel-method |
| keywords[10].score | 0.39246395230293274 |
| keywords[10].display_name | Kernel method |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.3461662530899048 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.14746561646461487 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.0714617371559143 |
| keywords[13].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1155/2021/2026895 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S75054922 |
| locations[0].source.issn | 0197-6729, 2042-3195 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0197-6729 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Advanced Transportation |
| locations[0].source.host_organization | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_name | Hindawi Publishing Corporation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_lineage_names | Hindawi Publishing Corporation |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://downloads.hindawi.com/journals/jat/2021/2026895.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Advanced Transportation |
| locations[0].landing_page_url | https://doi.org/10.1155/2021/2026895 |
| locations[1].id | pmh:oai:doaj.org/article:00f791980fc64bd187119018ecd45149 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Advanced Transportation, Vol 2021 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/00f791980fc64bd187119018ecd45149 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5086547689 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3658-3511 |
| authorships[0].author.display_name | Zongying Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I43313876 |
| authorships[0].affiliations[0].raw_affiliation_string | Dalian Maritime University, Faculty of Navigation, No. 1 Linghai Road, Dalian 116085, China |
| authorships[0].institutions[0].id | https://openalex.org/I43313876 |
| authorships[0].institutions[0].ror | https://ror.org/002b7nr53 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I43313876 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Dalian Maritime University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zongying Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Dalian Maritime University, Faculty of Navigation, No. 1 Linghai Road, Dalian 116085, China |
| authorships[1].author.id | https://openalex.org/A5034733148 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9394-6142 |
| authorships[1].author.display_name | Shaoxi Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I43313876 |
| authorships[1].affiliations[0].raw_affiliation_string | Dalian Maritime University, Faculty of Navigation, No. 1 Linghai Road, Dalian 116085, China |
| authorships[1].institutions[0].id | https://openalex.org/I43313876 |
| authorships[1].institutions[0].ror | https://ror.org/002b7nr53 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I43313876 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Dalian Maritime University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shaoxi Li |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Dalian Maritime University, Faculty of Navigation, No. 1 Linghai Road, Dalian 116085, China |
| authorships[2].author.id | https://openalex.org/A5022282765 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9235-257X |
| authorships[2].author.display_name | Jiangling Hao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I43313876 |
| authorships[2].affiliations[0].raw_affiliation_string | Dalian Maritime University, Faculty of Navigation, No. 1 Linghai Road, Dalian 116085, China |
| authorships[2].institutions[0].id | https://openalex.org/I43313876 |
| authorships[2].institutions[0].ror | https://ror.org/002b7nr53 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I43313876 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Dalian Maritime University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jiangling Hao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Dalian Maritime University, Faculty of Navigation, No. 1 Linghai Road, Dalian 116085, China |
| authorships[3].author.id | https://openalex.org/A5002726540 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6609-8552 |
| authorships[3].author.display_name | Jingfeng Hu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I43313876 |
| authorships[3].affiliations[0].raw_affiliation_string | Dalian Maritime University, Faculty of Navigation, No. 1 Linghai Road, Dalian 116085, China |
| authorships[3].institutions[0].id | https://openalex.org/I43313876 |
| authorships[3].institutions[0].ror | https://ror.org/002b7nr53 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I43313876 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Dalian Maritime University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jingfeng Hu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Dalian Maritime University, Faculty of Navigation, No. 1 Linghai Road, Dalian 116085, China |
| authorships[4].author.id | https://openalex.org/A5063170334 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1327-6105 |
| authorships[4].author.display_name | Mingyang Pan |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I43313876 |
| authorships[4].affiliations[0].raw_affiliation_string | Dalian Maritime University, Faculty of Navigation, No. 1 Linghai Road, Dalian 116085, China |
| authorships[4].institutions[0].id | https://openalex.org/I43313876 |
| authorships[4].institutions[0].ror | https://ror.org/002b7nr53 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I43313876 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Dalian Maritime University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Mingyang Pan |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Dalian Maritime University, Faculty of Navigation, No. 1 Linghai Road, Dalian 116085, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://downloads.hindawi.com/journals/jat/2021/2026895.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Efficient and Fast Model Reduced Kernel KNN for Human Activity Recognition |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10444 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9951000213623047 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Context-Aware Activity Recognition Systems |
| related_works | https://openalex.org/W1603091392, https://openalex.org/W3123056048, https://openalex.org/W2095626363, https://openalex.org/W4389428786, https://openalex.org/W4389251307, https://openalex.org/W2079825755, https://openalex.org/W4386075310, https://openalex.org/W2089892314, https://openalex.org/W2974741803, https://openalex.org/W1983263273 |
| cited_by_count | 20 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1155/2021/2026895 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S75054922 |
| best_oa_location.source.issn | 0197-6729, 2042-3195 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0197-6729 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Advanced Transportation |
| best_oa_location.source.host_organization | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_name | Hindawi Publishing Corporation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://downloads.hindawi.com/journals/jat/2021/2026895.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Advanced Transportation |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2021/2026895 |
| primary_location.id | doi:10.1155/2021/2026895 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S75054922 |
| primary_location.source.issn | 0197-6729, 2042-3195 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0197-6729 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Advanced Transportation |
| primary_location.source.host_organization | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_name | Hindawi Publishing Corporation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://downloads.hindawi.com/journals/jat/2021/2026895.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Advanced Transportation |
| primary_location.landing_page_url | https://doi.org/10.1155/2021/2026895 |
| publication_date | 2021-06-02 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2801821709, https://openalex.org/W2779495751, https://openalex.org/W2805033630, https://openalex.org/W2897821359, https://openalex.org/W2928842276, https://openalex.org/W2949767632, https://openalex.org/W2910401125, https://openalex.org/W2491430782, https://openalex.org/W1979370046, https://openalex.org/W2668061517, https://openalex.org/W2794885692, https://openalex.org/W2802975867, https://openalex.org/W2778714099, https://openalex.org/W2052684427, https://openalex.org/W2900362095, https://openalex.org/W2763350515, https://openalex.org/W2798532996, https://openalex.org/W2134603844, https://openalex.org/W4239510810, https://openalex.org/W2989834969, https://openalex.org/W2013668940, https://openalex.org/W3107178372, https://openalex.org/W2561964848, https://openalex.org/W2795584780, https://openalex.org/W2073259742, https://openalex.org/W2219995598, https://openalex.org/W3120740533 |
| referenced_works_count | 27 |
| abstract_inverted_index.K | 145 |
| abstract_inverted_index.a | 105 |
| abstract_inverted_index.In | 61 |
| abstract_inverted_index.It | 125, 175 |
| abstract_inverted_index.an | 139 |
| abstract_inverted_index.as | 24, 120 |
| abstract_inverted_index.be | 88 |
| abstract_inverted_index.by | 212, 218 |
| abstract_inverted_index.in | 79, 114, 165, 180, 230 |
| abstract_inverted_index.is | 77, 110, 118, 190, 233 |
| abstract_inverted_index.of | 2, 6, 14, 102, 141, 144, 186, 223 |
| abstract_inverted_index.on | 66, 154 |
| abstract_inverted_index.to | 59, 87 |
| abstract_inverted_index.we | 64 |
| abstract_inverted_index.KNN | 95, 123, 227 |
| abstract_inverted_index.The | 92, 184, 220 |
| abstract_inverted_index.all | 231 |
| abstract_inverted_index.and | 4, 34, 52, 70, 112, 130, 167, 194, 214, 228 |
| abstract_inverted_index.for | 41, 192, 196 |
| abstract_inverted_index.gap | 222 |
| abstract_inverted_index.has | 57, 176 |
| abstract_inverted_index.its | 72 |
| abstract_inverted_index.own | 50 |
| abstract_inverted_index.the | 84, 89, 100, 127, 132, 149, 155, 158, 162, 202, 205, 210 |
| abstract_inverted_index.1.26 | 235 |
| abstract_inverted_index.HAPT | 193 |
| abstract_inverted_index.KNN, | 81, 204 |
| abstract_inverted_index.Many | 18 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.best | 163 |
| abstract_inverted_index.data | 3, 189 |
| abstract_inverted_index.feed | 28 |
| abstract_inverted_index.from | 16 |
| abstract_inverted_index.good | 39 |
| abstract_inverted_index.have | 48 |
| abstract_inverted_index.lots | 13 |
| abstract_inverted_index.only | 234 |
| abstract_inverted_index.such | 23 |
| abstract_inverted_index.this | 62, 136 |
| abstract_inverted_index.time | 129, 225 |
| abstract_inverted_index.used | 113 |
| abstract_inverted_index.with | 96, 172, 201 |
| abstract_inverted_index.(KNN) | 69 |
| abstract_inverted_index.0.27. | 219 |
| abstract_inverted_index.1.82% | 213 |
| abstract_inverted_index.Based | 153 |
| abstract_inverted_index.focus | 65 |
| abstract_inverted_index.human | 9, 43, 168, 181, 187 |
| abstract_inverted_index.input | 85 |
| abstract_inverted_index.model | 80, 94, 115, 207 |
| abstract_inverted_index.named | 119 |
| abstract_inverted_index.novel | 106 |
| abstract_inverted_index.other | 173 |
| abstract_inverted_index.small | 221 |
| abstract_inverted_index.solve | 71 |
| abstract_inverted_index.space | 58 |
| abstract_inverted_index.still | 56 |
| abstract_inverted_index.study | 137 |
| abstract_inverted_index.super | 177 |
| abstract_inverted_index.their | 49, 53 |
| abstract_inverted_index.these | 46 |
| abstract_inverted_index.which | 82, 117, 147 |
| abstract_inverted_index.91.60% | 191 |
| abstract_inverted_index.92.67% | 195 |
| abstract_inverted_index.K-KNN, | 116 |
| abstract_inverted_index.Kernel | 122 |
| abstract_inverted_index.RK-KNN | 160, 208, 229 |
| abstract_inverted_index.kernel | 75, 97, 108 |
| abstract_inverted_index.method | 76, 109 |
| abstract_inverted_index.neural | 26, 30 |
| abstract_inverted_index.number | 143 |
| abstract_inverted_index.study, | 63 |
| abstract_inverted_index.vector | 36 |
| abstract_inverted_index.works, | 157 |
| abstract_inverted_index.(K-KNN) | 98 |
| abstract_inverted_index.Reduced | 121 |
| abstract_inverted_index.ability | 179 |
| abstract_inverted_index.achieve | 38 |
| abstract_inverted_index.between | 226 |
| abstract_inverted_index.classic | 19 |
| abstract_inverted_index.forward | 29 |
| abstract_inverted_index.machine | 20 |
| abstract_inverted_index.models. | 174 |
| abstract_inverted_index.obtains | 161 |
| abstract_inverted_index.reduced | 107 |
| abstract_inverted_index.reduces | 126, 148 |
| abstract_inverted_index.support | 35 |
| abstract_inverted_index.Firstly, | 74 |
| abstract_inverted_index.However, | 45 |
| abstract_inverted_index.accuracy | 55, 101, 185, 211 |
| abstract_inverted_index.activity | 10, 169, 182, 188 |
| abstract_inverted_index.approach | 140 |
| abstract_inverted_index.attracts | 12 |
| abstract_inverted_index.compared | 171, 200 |
| abstract_inverted_index.datasets | 170, 232 |
| abstract_inverted_index.defining | 142 |
| abstract_inverted_index.employed | 78 |
| abstract_inverted_index.enhances | 131 |
| abstract_inverted_index.features | 86 |
| abstract_inverted_index.improve. | 60 |
| abstract_inverted_index.improves | 99 |
| abstract_inverted_index.learning | 21 |
| abstract_inverted_index.machine, | 37 |
| abstract_inverted_index.network, | 27, 31 |
| abstract_inverted_index.problem. | 152 |
| abstract_inverted_index.proposed | 93, 111, 159, 206 |
| abstract_inverted_index.proposes | 138 |
| abstract_inverted_index.seconds. | 236 |
| abstract_inverted_index.standard | 216 |
| abstract_inverted_index.(RK-KNN). | 124 |
| abstract_inverted_index.K-nearest | 32, 67 |
| abstract_inverted_index.Moreover, | 135 |
| abstract_inverted_index.Secondly, | 104 |
| abstract_inverted_index.activity. | 44 |
| abstract_inverted_index.attention | 15 |
| abstract_inverted_index.decreases | 215 |
| abstract_inverted_index.detecting | 42 |
| abstract_inverted_index.deviation | 217 |
| abstract_inverted_index.features. | 91 |
| abstract_inverted_index.increases | 209 |
| abstract_inverted_index.neighbors | 68 |
| abstract_inverted_index.parameter | 150 |
| abstract_inverted_index.Averagely, | 199 |
| abstract_inverted_index.algorithms | 47 |
| abstract_inverted_index.artificial | 7, 25 |
| abstract_inverted_index.benchmarks | 166 |
| abstract_inverted_index.dependency | 151 |
| abstract_inverted_index.neighbors, | 33, 146 |
| abstract_inverted_index.prediction | 54 |
| abstract_inverted_index.processing | 128, 224 |
| abstract_inverted_index.transforms | 83 |
| abstract_inverted_index.Smartphone, | 197 |
| abstract_inverted_index.algorithms, | 22 |
| abstract_inverted_index.development | 5 |
| abstract_inverted_index.limitations | 51 |
| abstract_inverted_index.performance | 40, 164 |
| abstract_inverted_index.recognition | 11 |
| abstract_inverted_index.accumulation | 1 |
| abstract_inverted_index.conventional | 203 |
| abstract_inverted_index.experimental | 156 |
| abstract_inverted_index.limitations. | 73 |
| abstract_inverted_index.performance. | 134 |
| abstract_inverted_index.recognition. | 183 |
| abstract_inverted_index.researchers. | 17 |
| abstract_inverted_index.intelligence, | 8 |
| abstract_inverted_index.respectively. | 198 |
| abstract_inverted_index.classification | 133, 178 |
| abstract_inverted_index.classification. | 103 |
| abstract_inverted_index.high-dimensional | 90 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5034733148 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I43313876 |
| citation_normalized_percentile.value | 0.83530712 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |