An Efficient and Lightweight Convolutional Neural Network for Remote Sensing Image Scene Classification Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.3390/s20071999
Classifying remote sensing images is vital for interpreting image content. Presently, remote sensing image scene classification methods using convolutional neural networks have drawbacks, including excessive parameters and heavy calculation costs. More efficient and lightweight CNNs have fewer parameters and calculations, but their classification performance is generally weaker. We propose a more efficient and lightweight convolutional neural network method to improve classification accuracy with a small training dataset. Inspired by fine-grained visual recognition, this study introduces a bilinear convolutional neural network model for scene classification. First, the lightweight convolutional neural network, MobileNetv2, is used to extract deep and abstract image features. Each feature is then transformed into two features with two different convolutional layers. The transformed features are subjected to Hadamard product operation to obtain an enhanced bilinear feature. Finally, the bilinear feature after pooling and normalization is used for classification. Experiments are performed on three widely used datasets: UC Merced, AID, and NWPU-RESISC45. Compared with other state-of-art methods, the proposed method has fewer parameters and calculations, while achieving higher accuracy. By including feature fusion with bilinear pooling, performance and accuracy for remote scene classification can greatly improve. This could be applied to any remote sensing image classification task.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s20071999
- https://www.mdpi.com/1424-8220/20/7/1999/pdf?version=1586841750
- OA Status
- gold
- Cited By
- 101
- References
- 79
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3014323018
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3014323018Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s20071999Digital Object Identifier
- Title
-
An Efficient and Lightweight Convolutional Neural Network for Remote Sensing Image Scene ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-04-02Full publication date if available
- Authors
-
Donghang Yu, Qing Xu, Haitao Guo, Chuan Zhao, Yuzhun Lin, Daoji LiList of authors in order
- Landing page
-
https://doi.org/10.3390/s20071999Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/20/7/1999/pdf?version=1586841750Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/20/7/1999/pdf?version=1586841750Direct OA link when available
- Concepts
-
Convolutional neural network, Pooling, Computer science, Bilinear interpolation, Artificial intelligence, Contextual image classification, Feature (linguistics), Pattern recognition (psychology), Normalization (sociology), Feature extraction, Remote sensing, Image (mathematics), Computer vision, Geology, Anthropology, Philosophy, Linguistics, SociologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
101Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 11, 2024: 21, 2023: 24, 2022: 21, 2021: 18Per-year citation counts (last 5 years)
- References (count)
-
79Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3014323018 |
|---|---|
| doi | https://doi.org/10.3390/s20071999 |
| ids.doi | https://doi.org/10.3390/s20071999 |
| ids.mag | 3014323018 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/32252483 |
| ids.openalex | https://openalex.org/W3014323018 |
| fwci | 13.76818786 |
| type | article |
| title | An Efficient and Lightweight Convolutional Neural Network for Remote Sensing Image Scene Classification |
| biblio.issue | 7 |
| biblio.volume | 20 |
| biblio.last_page | 1999 |
| biblio.first_page | 1999 |
| topics[0].id | https://openalex.org/T10689 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Remote-Sensing Image Classification |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9975000023841858 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T13890 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9930999875068665 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1902 |
| topics[2].subfield.display_name | Atmospheric Science |
| topics[2].display_name | Remote Sensing and Land Use |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8508703708648682 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C70437156 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7749074101448059 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7228652 |
| concepts[1].display_name | Pooling |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.727260947227478 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C205203396 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6936417818069458 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q612143 |
| concepts[3].display_name | Bilinear interpolation |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.684466540813446 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C75294576 |
| concepts[5].level | 3 |
| concepts[5].score | 0.6148995161056519 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5165192 |
| concepts[5].display_name | Contextual image classification |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.6020188331604004 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5925362706184387 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C136886441 |
| concepts[8].level | 2 |
| concepts[8].score | 0.588559627532959 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q926129 |
| concepts[8].display_name | Normalization (sociology) |
| concepts[9].id | https://openalex.org/C52622490 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5517131090164185 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[9].display_name | Feature extraction |
| concepts[10].id | https://openalex.org/C62649853 |
| concepts[10].level | 1 |
| concepts[10].score | 0.39366406202316284 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[10].display_name | Remote sensing |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3595013916492462 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| concepts[12].id | https://openalex.org/C31972630 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3087049126625061 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[12].display_name | Computer vision |
| concepts[13].id | https://openalex.org/C127313418 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[13].display_name | Geology |
| concepts[14].id | https://openalex.org/C19165224 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q23404 |
| concepts[14].display_name | Anthropology |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| concepts[17].id | https://openalex.org/C144024400 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[17].display_name | Sociology |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.8508703708648682 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/pooling |
| keywords[1].score | 0.7749074101448059 |
| keywords[1].display_name | Pooling |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.727260947227478 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/bilinear-interpolation |
| keywords[3].score | 0.6936417818069458 |
| keywords[3].display_name | Bilinear interpolation |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.684466540813446 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/contextual-image-classification |
| keywords[5].score | 0.6148995161056519 |
| keywords[5].display_name | Contextual image classification |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.6020188331604004 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.5925362706184387 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/normalization |
| keywords[8].score | 0.588559627532959 |
| keywords[8].display_name | Normalization (sociology) |
| keywords[9].id | https://openalex.org/keywords/feature-extraction |
| keywords[9].score | 0.5517131090164185 |
| keywords[9].display_name | Feature extraction |
| keywords[10].id | https://openalex.org/keywords/remote-sensing |
| keywords[10].score | 0.39366406202316284 |
| keywords[10].display_name | Remote sensing |
| keywords[11].id | https://openalex.org/keywords/image |
| keywords[11].score | 0.3595013916492462 |
| keywords[11].display_name | Image (mathematics) |
| keywords[12].id | https://openalex.org/keywords/computer-vision |
| keywords[12].score | 0.3087049126625061 |
| keywords[12].display_name | Computer vision |
| language | en |
| locations[0].id | doi:10.3390/s20071999 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/20/7/1999/pdf?version=1586841750 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s20071999 |
| locations[1].id | pmid:32252483 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/32252483 |
| locations[2].id | pmh:oai:doaj.org/article:b3c8f33e758f4493bcb52aab8e84241a |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 20, Iss 7, p 1999 (2020) |
| locations[2].landing_page_url | https://doaj.org/article/b3c8f33e758f4493bcb52aab8e84241a |
| locations[3].id | pmh:oai:mdpi.com:/1424-8220/20/7/1999/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors |
| locations[3].landing_page_url | http://dx.doi.org/10.3390/s20071999 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:7181261 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/7181261 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5055940298 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5858-7671 |
| authorships[0].author.display_name | Donghang Yu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I169689159 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Geospatial Information, PLA Strategic Support Force Information Engineering University, Zheng Zhou 450001, China |
| authorships[0].institutions[0].id | https://openalex.org/I169689159 |
| authorships[0].institutions[0].ror | https://ror.org/00mm1qk40 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I169689159 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | PLA Information Engineering University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Donghang Yu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Geospatial Information, PLA Strategic Support Force Information Engineering University, Zheng Zhou 450001, China |
| authorships[1].author.id | https://openalex.org/A5084925209 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2505-7188 |
| authorships[1].author.display_name | Qing Xu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I169689159 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Geospatial Information, PLA Strategic Support Force Information Engineering University, Zheng Zhou 450001, China |
| authorships[1].institutions[0].id | https://openalex.org/I169689159 |
| authorships[1].institutions[0].ror | https://ror.org/00mm1qk40 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I169689159 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | PLA Information Engineering University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qing Xu |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Institute of Geospatial Information, PLA Strategic Support Force Information Engineering University, Zheng Zhou 450001, China |
| authorships[2].author.id | https://openalex.org/A5101656781 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5769-2798 |
| authorships[2].author.display_name | Haitao Guo |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I169689159 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Geospatial Information, PLA Strategic Support Force Information Engineering University, Zheng Zhou 450001, China |
| authorships[2].institutions[0].id | https://openalex.org/I169689159 |
| authorships[2].institutions[0].ror | https://ror.org/00mm1qk40 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I169689159 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | PLA Information Engineering University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Haitao Guo |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Geospatial Information, PLA Strategic Support Force Information Engineering University, Zheng Zhou 450001, China |
| authorships[3].author.id | https://openalex.org/A5033747644 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9197-9768 |
| authorships[3].author.display_name | Chuan Zhao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I169689159 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute of Geospatial Information, PLA Strategic Support Force Information Engineering University, Zheng Zhou 450001, China |
| authorships[3].institutions[0].id | https://openalex.org/I169689159 |
| authorships[3].institutions[0].ror | https://ror.org/00mm1qk40 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I169689159 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | PLA Information Engineering University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chuan Zhao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute of Geospatial Information, PLA Strategic Support Force Information Engineering University, Zheng Zhou 450001, China |
| authorships[4].author.id | https://openalex.org/A5100577683 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yuzhun Lin |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I169689159 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute of Geospatial Information, PLA Strategic Support Force Information Engineering University, Zheng Zhou 450001, China |
| authorships[4].institutions[0].id | https://openalex.org/I169689159 |
| authorships[4].institutions[0].ror | https://ror.org/00mm1qk40 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I169689159 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | PLA Information Engineering University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yuzhun Lin |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute of Geospatial Information, PLA Strategic Support Force Information Engineering University, Zheng Zhou 450001, China |
| authorships[5].author.id | https://openalex.org/A5101521281 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6041-0130 |
| authorships[5].author.display_name | Daoji Li |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I169689159 |
| authorships[5].affiliations[0].raw_affiliation_string | Institute of Geospatial Information, PLA Strategic Support Force Information Engineering University, Zheng Zhou 450001, China |
| authorships[5].institutions[0].id | https://openalex.org/I169689159 |
| authorships[5].institutions[0].ror | https://ror.org/00mm1qk40 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I169689159 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | PLA Information Engineering University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Daoji Li |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Institute of Geospatial Information, PLA Strategic Support Force Information Engineering University, Zheng Zhou 450001, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/20/7/1999/pdf?version=1586841750 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Efficient and Lightweight Convolutional Neural Network for Remote Sensing Image Scene Classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10689 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Remote-Sensing Image Classification |
| related_works | https://openalex.org/W2950524887, https://openalex.org/W2883502031, https://openalex.org/W2261271299, https://openalex.org/W4280638452, https://openalex.org/W4285020665, https://openalex.org/W2963066927, https://openalex.org/W3160506688, https://openalex.org/W3111811104, https://openalex.org/W4380083739, https://openalex.org/W2964944724 |
| cited_by_count | 101 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 11 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 21 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 24 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 21 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 18 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 6 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/s20071999 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/20/7/1999/pdf?version=1586841750 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s20071999 |
| primary_location.id | doi:10.3390/s20071999 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/20/7/1999/pdf?version=1586841750 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s20071999 |
| publication_date | 2020-04-02 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W1584663654, https://openalex.org/W2515866431, https://openalex.org/W2592962403, https://openalex.org/W1980038761, https://openalex.org/W2945385604, https://openalex.org/W2746032333, https://openalex.org/W2767089292, https://openalex.org/W2883982921, https://openalex.org/W2799466885, https://openalex.org/W2914885528, https://openalex.org/W2044465660, https://openalex.org/W2024815898, https://openalex.org/W2098642880, https://openalex.org/W258213556, https://openalex.org/W2091280333, https://openalex.org/W2122317659, https://openalex.org/W1544008493, https://openalex.org/W6683411478, https://openalex.org/W2151103935, https://openalex.org/W2153425333, https://openalex.org/W40885937, https://openalex.org/W1989316905, https://openalex.org/W2067178723, https://openalex.org/W2001123951, https://openalex.org/W2395048810, https://openalex.org/W2043857439, https://openalex.org/W1968591910, https://openalex.org/W2162915993, https://openalex.org/W2077689834, https://openalex.org/W2325982591, https://openalex.org/W1963985200, https://openalex.org/W2169100202, https://openalex.org/W2283168383, https://openalex.org/W2411876745, https://openalex.org/W1984309565, https://openalex.org/W2108598243, https://openalex.org/W2567850185, https://openalex.org/W2253590344, https://openalex.org/W2098676252, https://openalex.org/W2900358019, https://openalex.org/W3019448917, https://openalex.org/W2944715228, https://openalex.org/W2940939359, https://openalex.org/W2890732922, https://openalex.org/W2944971001, https://openalex.org/W2783165089, https://openalex.org/W2974035141, https://openalex.org/W4391589970, https://openalex.org/W2963910238, https://openalex.org/W2621526417, https://openalex.org/W2961121772, https://openalex.org/W2795674590, https://openalex.org/W2607558879, https://openalex.org/W2347115704, https://openalex.org/W2620429297, https://openalex.org/W2097117768, https://openalex.org/W6687483927, https://openalex.org/W2954156245, https://openalex.org/W2996322457, https://openalex.org/W2940542567, https://openalex.org/W2104657103, https://openalex.org/W2883502031, https://openalex.org/W2963163009, https://openalex.org/W2147672495, https://openalex.org/W2599857737, https://openalex.org/W6748260432, https://openalex.org/W2794179679, https://openalex.org/W2912089046, https://openalex.org/W2937188477, https://openalex.org/W2920232463, https://openalex.org/W2919352650, https://openalex.org/W2787070260, https://openalex.org/W2161969291, https://openalex.org/W3105409087, https://openalex.org/W2796438033, https://openalex.org/W3103856189, https://openalex.org/W2194775991, https://openalex.org/W1686810756, https://openalex.org/W3105577662 |
| referenced_works_count | 79 |
| abstract_inverted_index.a | 49, 63, 75 |
| abstract_inverted_index.By | 170 |
| abstract_inverted_index.UC | 148 |
| abstract_inverted_index.We | 47 |
| abstract_inverted_index.an | 124 |
| abstract_inverted_index.be | 189 |
| abstract_inverted_index.by | 68 |
| abstract_inverted_index.is | 4, 44, 91, 102, 136 |
| abstract_inverted_index.on | 143 |
| abstract_inverted_index.to | 58, 93, 118, 122, 191 |
| abstract_inverted_index.The | 113 |
| abstract_inverted_index.and | 26, 32, 38, 52, 96, 134, 151, 164, 178 |
| abstract_inverted_index.any | 192 |
| abstract_inverted_index.are | 116, 141 |
| abstract_inverted_index.but | 40 |
| abstract_inverted_index.can | 184 |
| abstract_inverted_index.for | 6, 81, 138, 180 |
| abstract_inverted_index.has | 161 |
| abstract_inverted_index.the | 85, 129, 158 |
| abstract_inverted_index.two | 106, 109 |
| abstract_inverted_index.AID, | 150 |
| abstract_inverted_index.CNNs | 34 |
| abstract_inverted_index.Each | 100 |
| abstract_inverted_index.More | 30 |
| abstract_inverted_index.This | 187 |
| abstract_inverted_index.deep | 95 |
| abstract_inverted_index.have | 21, 35 |
| abstract_inverted_index.into | 105 |
| abstract_inverted_index.more | 50 |
| abstract_inverted_index.then | 103 |
| abstract_inverted_index.this | 72 |
| abstract_inverted_index.used | 92, 137, 146 |
| abstract_inverted_index.with | 62, 108, 154, 174 |
| abstract_inverted_index.after | 132 |
| abstract_inverted_index.could | 188 |
| abstract_inverted_index.fewer | 36, 162 |
| abstract_inverted_index.heavy | 27 |
| abstract_inverted_index.image | 8, 13, 98, 195 |
| abstract_inverted_index.model | 80 |
| abstract_inverted_index.other | 155 |
| abstract_inverted_index.scene | 14, 82, 182 |
| abstract_inverted_index.small | 64 |
| abstract_inverted_index.study | 73 |
| abstract_inverted_index.task. | 197 |
| abstract_inverted_index.their | 41 |
| abstract_inverted_index.three | 144 |
| abstract_inverted_index.using | 17 |
| abstract_inverted_index.vital | 5 |
| abstract_inverted_index.while | 166 |
| abstract_inverted_index.First, | 84 |
| abstract_inverted_index.costs. | 29 |
| abstract_inverted_index.fusion | 173 |
| abstract_inverted_index.higher | 168 |
| abstract_inverted_index.images | 3 |
| abstract_inverted_index.method | 57, 160 |
| abstract_inverted_index.neural | 19, 55, 78, 88 |
| abstract_inverted_index.obtain | 123 |
| abstract_inverted_index.remote | 1, 11, 181, 193 |
| abstract_inverted_index.visual | 70 |
| abstract_inverted_index.widely | 145 |
| abstract_inverted_index.Merced, | 149 |
| abstract_inverted_index.applied | 190 |
| abstract_inverted_index.extract | 94 |
| abstract_inverted_index.feature | 101, 131, 172 |
| abstract_inverted_index.greatly | 185 |
| abstract_inverted_index.improve | 59 |
| abstract_inverted_index.layers. | 112 |
| abstract_inverted_index.methods | 16 |
| abstract_inverted_index.network | 56, 79 |
| abstract_inverted_index.pooling | 133 |
| abstract_inverted_index.product | 120 |
| abstract_inverted_index.propose | 48 |
| abstract_inverted_index.sensing | 2, 12, 194 |
| abstract_inverted_index.weaker. | 46 |
| abstract_inverted_index.Compared | 153 |
| abstract_inverted_index.Finally, | 128 |
| abstract_inverted_index.Hadamard | 119 |
| abstract_inverted_index.Inspired | 67 |
| abstract_inverted_index.abstract | 97 |
| abstract_inverted_index.accuracy | 61, 179 |
| abstract_inverted_index.bilinear | 76, 126, 130, 175 |
| abstract_inverted_index.content. | 9 |
| abstract_inverted_index.dataset. | 66 |
| abstract_inverted_index.enhanced | 125 |
| abstract_inverted_index.feature. | 127 |
| abstract_inverted_index.features | 107, 115 |
| abstract_inverted_index.improve. | 186 |
| abstract_inverted_index.methods, | 157 |
| abstract_inverted_index.network, | 89 |
| abstract_inverted_index.networks | 20 |
| abstract_inverted_index.pooling, | 176 |
| abstract_inverted_index.proposed | 159 |
| abstract_inverted_index.training | 65 |
| abstract_inverted_index.accuracy. | 169 |
| abstract_inverted_index.achieving | 167 |
| abstract_inverted_index.datasets: | 147 |
| abstract_inverted_index.different | 110 |
| abstract_inverted_index.efficient | 31, 51 |
| abstract_inverted_index.excessive | 24 |
| abstract_inverted_index.features. | 99 |
| abstract_inverted_index.generally | 45 |
| abstract_inverted_index.including | 23, 171 |
| abstract_inverted_index.operation | 121 |
| abstract_inverted_index.performed | 142 |
| abstract_inverted_index.subjected | 117 |
| abstract_inverted_index.Presently, | 10 |
| abstract_inverted_index.drawbacks, | 22 |
| abstract_inverted_index.introduces | 74 |
| abstract_inverted_index.parameters | 25, 37, 163 |
| abstract_inverted_index.Classifying | 0 |
| abstract_inverted_index.Experiments | 140 |
| abstract_inverted_index.calculation | 28 |
| abstract_inverted_index.lightweight | 33, 53, 86 |
| abstract_inverted_index.performance | 43, 177 |
| abstract_inverted_index.transformed | 104, 114 |
| abstract_inverted_index.MobileNetv2, | 90 |
| abstract_inverted_index.fine-grained | 69 |
| abstract_inverted_index.interpreting | 7 |
| abstract_inverted_index.recognition, | 71 |
| abstract_inverted_index.state-of-art | 156 |
| abstract_inverted_index.calculations, | 39, 165 |
| abstract_inverted_index.convolutional | 18, 54, 77, 87, 111 |
| abstract_inverted_index.normalization | 135 |
| abstract_inverted_index.NWPU-RESISC45. | 152 |
| abstract_inverted_index.classification | 15, 42, 60, 183, 196 |
| abstract_inverted_index.classification. | 83, 139 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5084925209 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I169689159 |
| citation_normalized_percentile.value | 0.98811117 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |