An Efficient Hardware Implementation of CNN-Based Object Trackers for Real-Time Applications Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.36227/techrxiv.14445267
The object tracking research continues to be active since long period because of the several real-world variations imposed in the tracking process, like occlusion, changing appearance, illumination changes and cluttered background. With wide range of applications, embedded implementations are typically pursed for the tracking systems. Although object trackers based on Convolution Neural Network (CNN) have achieved state-of-the-art performance, they challenge the embedded implementations because of slow speed and large memory requirement. In this paper, we address these limitations on the algorithm-side and the circuitside. On the algorithm side, we adopt interpolation schemes which can significantly reduce the processing time and the memory storage requirements. We also evaluate the approximation of the hardware-expensive computations aiming for an efficient hardware implementation. Moreover, we modified the online-training scheme in order to achieve a constant processing time across all video frames. On the circuit side, we developed a hardware accelerator of the online training stage. We avoid the transposed reading from the external memory to speed-up the data movement with no performance degradation. Our proposed hardware accelerator achieves 45.9 frames-per-second in training the fully connected layers.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.36227/techrxiv.14445267
- https://www.techrxiv.org/articles/preprint/An_Efficient_Hardware_Implementation_of_CNN-Based_Object_Trackers_for_Real-Time_Applications/14445267/1/files/27629160.pdf
- OA Status
- gold
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4253713347
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4253713347Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.36227/techrxiv.14445267Digital Object Identifier
- Title
-
An Efficient Hardware Implementation of CNN-Based Object Trackers for Real-Time ApplicationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-04-21Full publication date if available
- Authors
-
Al‐Hussein A. El‐Shafie, Mohamed I. Zaki, S. E. D. HabibList of authors in order
- Landing page
-
https://doi.org/10.36227/techrxiv.14445267Publisher landing page
- PDF URL
-
https://www.techrxiv.org/articles/preprint/An_Efficient_Hardware_Implementation_of_CNN-Based_Object_Trackers_for_Real-Time_Applications/14445267/1/files/27629160.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.techrxiv.org/articles/preprint/An_Efficient_Hardware_Implementation_of_CNN-Based_Object_Trackers_for_Real-Time_Applications/14445267/1/files/27629160.pdfDirect OA link when available
- Concepts
-
Computer science, BitTorrent tracker, Interpolation (computer graphics), Convolutional neural network, Computer hardware, Process (computing), Video tracking, Hardware acceleration, Computation, Tracking (education), Speedup, Object (grammar), Artificial intelligence, Parallel computing, Field-programmable gate array, Algorithm, Eye tracking, Image (mathematics), Psychology, Pedagogy, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4253713347 |
|---|---|
| doi | https://doi.org/10.36227/techrxiv.14445267 |
| ids.doi | https://doi.org/10.36227/techrxiv.14445267 |
| ids.openalex | https://openalex.org/W4253713347 |
| fwci | 0.0 |
| type | preprint |
| title | An Efficient Hardware Implementation of CNN-Based Object Trackers for Real-Time Applications |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10331 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9889000058174133 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Video Surveillance and Tracking Methods |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9115999937057495 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7975635528564453 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C57501372 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5971674919128418 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2021268 |
| concepts[1].display_name | BitTorrent tracker |
| concepts[2].id | https://openalex.org/C137800194 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5382563471794128 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11713455 |
| concepts[2].display_name | Interpolation (computer graphics) |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5167014598846436 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C9390403 |
| concepts[4].level | 1 |
| concepts[4].score | 0.49667125940322876 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3966 |
| concepts[4].display_name | Computer hardware |
| concepts[5].id | https://openalex.org/C98045186 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49281004071235657 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[5].display_name | Process (computing) |
| concepts[6].id | https://openalex.org/C202474056 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4904308021068573 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1931635 |
| concepts[6].display_name | Video tracking |
| concepts[7].id | https://openalex.org/C13164978 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4754740297794342 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q600158 |
| concepts[7].display_name | Hardware acceleration |
| concepts[8].id | https://openalex.org/C45374587 |
| concepts[8].level | 2 |
| concepts[8].score | 0.44801801443099976 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[8].display_name | Computation |
| concepts[9].id | https://openalex.org/C2775936607 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44770246744155884 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q466845 |
| concepts[9].display_name | Tracking (education) |
| concepts[10].id | https://openalex.org/C68339613 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4223766624927521 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1549489 |
| concepts[10].display_name | Speedup |
| concepts[11].id | https://openalex.org/C2781238097 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4096086621284485 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[11].display_name | Object (grammar) |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3599753975868225 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C173608175 |
| concepts[13].level | 1 |
| concepts[13].score | 0.22042372822761536 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[13].display_name | Parallel computing |
| concepts[14].id | https://openalex.org/C42935608 |
| concepts[14].level | 2 |
| concepts[14].score | 0.1886521875858307 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q190411 |
| concepts[14].display_name | Field-programmable gate array |
| concepts[15].id | https://openalex.org/C11413529 |
| concepts[15].level | 1 |
| concepts[15].score | 0.17105227708816528 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[15].display_name | Algorithm |
| concepts[16].id | https://openalex.org/C56461940 |
| concepts[16].level | 2 |
| concepts[16].score | 0.13673833012580872 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q970687 |
| concepts[16].display_name | Eye tracking |
| concepts[17].id | https://openalex.org/C115961682 |
| concepts[17].level | 2 |
| concepts[17].score | 0.13504672050476074 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[17].display_name | Image (mathematics) |
| concepts[18].id | https://openalex.org/C15744967 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[18].display_name | Psychology |
| concepts[19].id | https://openalex.org/C19417346 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7922 |
| concepts[19].display_name | Pedagogy |
| concepts[20].id | https://openalex.org/C111919701 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[20].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7975635528564453 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/bittorrent-tracker |
| keywords[1].score | 0.5971674919128418 |
| keywords[1].display_name | BitTorrent tracker |
| keywords[2].id | https://openalex.org/keywords/interpolation |
| keywords[2].score | 0.5382563471794128 |
| keywords[2].display_name | Interpolation (computer graphics) |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.5167014598846436 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/computer-hardware |
| keywords[4].score | 0.49667125940322876 |
| keywords[4].display_name | Computer hardware |
| keywords[5].id | https://openalex.org/keywords/process |
| keywords[5].score | 0.49281004071235657 |
| keywords[5].display_name | Process (computing) |
| keywords[6].id | https://openalex.org/keywords/video-tracking |
| keywords[6].score | 0.4904308021068573 |
| keywords[6].display_name | Video tracking |
| keywords[7].id | https://openalex.org/keywords/hardware-acceleration |
| keywords[7].score | 0.4754740297794342 |
| keywords[7].display_name | Hardware acceleration |
| keywords[8].id | https://openalex.org/keywords/computation |
| keywords[8].score | 0.44801801443099976 |
| keywords[8].display_name | Computation |
| keywords[9].id | https://openalex.org/keywords/tracking |
| keywords[9].score | 0.44770246744155884 |
| keywords[9].display_name | Tracking (education) |
| keywords[10].id | https://openalex.org/keywords/speedup |
| keywords[10].score | 0.4223766624927521 |
| keywords[10].display_name | Speedup |
| keywords[11].id | https://openalex.org/keywords/object |
| keywords[11].score | 0.4096086621284485 |
| keywords[11].display_name | Object (grammar) |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.3599753975868225 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/parallel-computing |
| keywords[13].score | 0.22042372822761536 |
| keywords[13].display_name | Parallel computing |
| keywords[14].id | https://openalex.org/keywords/field-programmable-gate-array |
| keywords[14].score | 0.1886521875858307 |
| keywords[14].display_name | Field-programmable gate array |
| keywords[15].id | https://openalex.org/keywords/algorithm |
| keywords[15].score | 0.17105227708816528 |
| keywords[15].display_name | Algorithm |
| keywords[16].id | https://openalex.org/keywords/eye-tracking |
| keywords[16].score | 0.13673833012580872 |
| keywords[16].display_name | Eye tracking |
| keywords[17].id | https://openalex.org/keywords/image |
| keywords[17].score | 0.13504672050476074 |
| keywords[17].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.36227/techrxiv.14445267 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | https://www.techrxiv.org/articles/preprint/An_Efficient_Hardware_Implementation_of_CNN-Based_Object_Trackers_for_Real-Time_Applications/14445267/1/files/27629160.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.36227/techrxiv.14445267 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5069552691 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8493-5262 |
| authorships[0].author.display_name | Al‐Hussein A. El‐Shafie |
| authorships[0].countries | EG |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I145487455 |
| authorships[0].affiliations[0].raw_affiliation_string | Communication Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt, |
| authorships[0].institutions[0].id | https://openalex.org/I145487455 |
| authorships[0].institutions[0].ror | https://ror.org/03q21mh05 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I145487455 |
| authorships[0].institutions[0].country_code | EG |
| authorships[0].institutions[0].display_name | Cairo University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Al-Hussein El-Shafie |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Communication Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt, |
| authorships[1].author.id | https://openalex.org/A5074480246 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0096-9263 |
| authorships[1].author.display_name | Mohamed I. Zaki |
| authorships[1].countries | EG |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I184834183 |
| authorships[1].affiliations[0].raw_affiliation_string | Computer Engineering Department, Faulty of Engineering, Al-Azhar University, Cairo, Egypt |
| authorships[1].institutions[0].id | https://openalex.org/I184834183 |
| authorships[1].institutions[0].ror | https://ror.org/05fnp1145 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I184834183 |
| authorships[1].institutions[0].country_code | EG |
| authorships[1].institutions[0].display_name | Al-Azhar University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mohamed Zaki |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Computer Engineering Department, Faulty of Engineering, Al-Azhar University, Cairo, Egypt |
| authorships[2].author.id | https://openalex.org/A5015083411 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6324-6740 |
| authorships[2].author.display_name | S. E. D. Habib |
| authorships[2].countries | EG |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I145487455 |
| authorships[2].affiliations[0].raw_affiliation_string | Communication Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt |
| authorships[2].institutions[0].id | https://openalex.org/I145487455 |
| authorships[2].institutions[0].ror | https://ror.org/03q21mh05 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I145487455 |
| authorships[2].institutions[0].country_code | EG |
| authorships[2].institutions[0].display_name | Cairo University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Serag Habib |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Communication Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.techrxiv.org/articles/preprint/An_Efficient_Hardware_Implementation_of_CNN-Based_Object_Trackers_for_Real-Time_Applications/14445267/1/files/27629160.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Efficient Hardware Implementation of CNN-Based Object Trackers for Real-Time Applications |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10331 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9889000058174133 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Video Surveillance and Tracking Methods |
| related_works | https://openalex.org/W4320086059, https://openalex.org/W4313480467, https://openalex.org/W4210734798, https://openalex.org/W4312249400, https://openalex.org/W3093712048, https://openalex.org/W3159642117, https://openalex.org/W3015573086, https://openalex.org/W1904671147, https://openalex.org/W4313854689, https://openalex.org/W2218038495 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.36227/techrxiv.14445267 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | https://www.techrxiv.org/articles/preprint/An_Efficient_Hardware_Implementation_of_CNN-Based_Object_Trackers_for_Real-Time_Applications/14445267/1/files/27629160.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.36227/techrxiv.14445267 |
| primary_location.id | doi:10.36227/techrxiv.14445267 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | https://www.techrxiv.org/articles/preprint/An_Efficient_Hardware_Implementation_of_CNN-Based_Object_Trackers_for_Real-Time_Applications/14445267/1/files/27629160.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.36227/techrxiv.14445267 |
| publication_date | 2021-04-21 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2962764251, https://openalex.org/W2161969291, https://openalex.org/W1857884451, https://openalex.org/W2214352687, https://openalex.org/W2244956674, https://openalex.org/W2518013266, https://openalex.org/W2408241409, https://openalex.org/W4287901611, https://openalex.org/W4391285994, https://openalex.org/W2738318237, https://openalex.org/W2766641843, https://openalex.org/W2964123402, https://openalex.org/W3157217665, https://openalex.org/W2902138814, https://openalex.org/W1994002998, https://openalex.org/W2158592639, https://openalex.org/W3090916454, https://openalex.org/W2910396952, https://openalex.org/W2951045917, https://openalex.org/W3092582417, https://openalex.org/W2590016403, https://openalex.org/W2800329759, https://openalex.org/W2594492285, https://openalex.org/W2964253307, https://openalex.org/W4236560001, https://openalex.org/W2470394683, https://openalex.org/W2963173190 |
| referenced_works_count | 27 |
| abstract_inverted_index.a | 129, 143 |
| abstract_inverted_index.In | 71 |
| abstract_inverted_index.On | 84, 137 |
| abstract_inverted_index.We | 104, 151 |
| abstract_inverted_index.an | 115 |
| abstract_inverted_index.be | 6 |
| abstract_inverted_index.in | 18, 125, 176 |
| abstract_inverted_index.no | 166 |
| abstract_inverted_index.of | 12, 34, 64, 109, 146 |
| abstract_inverted_index.on | 49, 78 |
| abstract_inverted_index.to | 5, 127, 160 |
| abstract_inverted_index.we | 74, 88, 120, 141 |
| abstract_inverted_index.Our | 169 |
| abstract_inverted_index.all | 134 |
| abstract_inverted_index.and | 28, 67, 81, 99 |
| abstract_inverted_index.are | 38 |
| abstract_inverted_index.can | 93 |
| abstract_inverted_index.for | 41, 114 |
| abstract_inverted_index.the | 13, 19, 42, 60, 79, 82, 85, 96, 100, 107, 110, 122, 138, 147, 153, 157, 162, 178 |
| abstract_inverted_index.45.9 | 174 |
| abstract_inverted_index.With | 31 |
| abstract_inverted_index.also | 105 |
| abstract_inverted_index.data | 163 |
| abstract_inverted_index.from | 156 |
| abstract_inverted_index.have | 54 |
| abstract_inverted_index.like | 22 |
| abstract_inverted_index.long | 9 |
| abstract_inverted_index.slow | 65 |
| abstract_inverted_index.they | 58 |
| abstract_inverted_index.this | 72 |
| abstract_inverted_index.time | 98, 132 |
| abstract_inverted_index.wide | 32 |
| abstract_inverted_index.with | 165 |
| abstract_inverted_index.(CNN) | 53 |
| abstract_inverted_index.adopt | 89 |
| abstract_inverted_index.avoid | 152 |
| abstract_inverted_index.based | 48 |
| abstract_inverted_index.fully | 179 |
| abstract_inverted_index.large | 68 |
| abstract_inverted_index.order | 126 |
| abstract_inverted_index.range | 33 |
| abstract_inverted_index.side, | 87, 140 |
| abstract_inverted_index.since | 8 |
| abstract_inverted_index.speed | 66 |
| abstract_inverted_index.these | 76 |
| abstract_inverted_index.video | 135 |
| abstract_inverted_index.which | 92 |
| abstract_inverted_index.Neural | 51 |
| abstract_inverted_index.across | 133 |
| abstract_inverted_index.active | 7 |
| abstract_inverted_index.aiming | 113 |
| abstract_inverted_index.memory | 69, 101, 159 |
| abstract_inverted_index.object | 1, 46 |
| abstract_inverted_index.online | 148 |
| abstract_inverted_index.paper, | 73 |
| abstract_inverted_index.period | 10 |
| abstract_inverted_index.pursed | 40 |
| abstract_inverted_index.reduce | 95 |
| abstract_inverted_index.scheme | 124 |
| abstract_inverted_index.stage. | 150 |
| abstract_inverted_index.Network | 52 |
| abstract_inverted_index.achieve | 128 |
| abstract_inverted_index.address | 75 |
| abstract_inverted_index.because | 11, 63 |
| abstract_inverted_index.changes | 27 |
| abstract_inverted_index.circuit | 139 |
| abstract_inverted_index.frames. | 136 |
| abstract_inverted_index.imposed | 17 |
| abstract_inverted_index.reading | 155 |
| abstract_inverted_index.schemes | 91 |
| abstract_inverted_index.several | 14 |
| abstract_inverted_index.storage | 102 |
| abstract_inverted_index.Although | 45 |
| abstract_inverted_index.achieved | 55 |
| abstract_inverted_index.achieves | 173 |
| abstract_inverted_index.changing | 24 |
| abstract_inverted_index.constant | 130 |
| abstract_inverted_index.embedded | 36, 61 |
| abstract_inverted_index.evaluate | 106 |
| abstract_inverted_index.external | 158 |
| abstract_inverted_index.hardware | 117, 144, 171 |
| abstract_inverted_index.modified | 121 |
| abstract_inverted_index.movement | 164 |
| abstract_inverted_index.process, | 21 |
| abstract_inverted_index.proposed | 170 |
| abstract_inverted_index.research | 3 |
| abstract_inverted_index.speed-up | 161 |
| abstract_inverted_index.systems. | 44 |
| abstract_inverted_index.trackers | 47 |
| abstract_inverted_index.tracking | 2, 20, 43 |
| abstract_inverted_index.training | 149, 177 |
| abstract_inverted_index.Moreover, | 119 |
| abstract_inverted_index.algorithm | 86 |
| abstract_inverted_index.challenge | 59 |
| abstract_inverted_index.cluttered | 29 |
| abstract_inverted_index.connected | 180 |
| abstract_inverted_index.continues | 4 |
| abstract_inverted_index.developed | 142 |
| abstract_inverted_index.efficient | 116 |
| abstract_inverted_index.typically | 39 |
| abstract_inverted_index.occlusion, | 23 |
| abstract_inverted_index.processing | 97, 131 |
| abstract_inverted_index.real-world | 15 |
| abstract_inverted_index.transposed | 154 |
| abstract_inverted_index.variations | 16 |
| abstract_inverted_index.Convolution | 50 |
| abstract_inverted_index.accelerator | 145, 172 |
| abstract_inverted_index.appearance, | 25 |
| abstract_inverted_index.background. | 30 |
| abstract_inverted_index.limitations | 77 |
| abstract_inverted_index.performance | 167 |
| abstract_inverted_index.circuitside. | 83 |
| abstract_inverted_index.computations | 112 |
| abstract_inverted_index.degradation. | 168 |
| abstract_inverted_index.illumination | 26 |
| abstract_inverted_index.performance, | 57 |
| abstract_inverted_index.requirement. | 70 |
| abstract_inverted_index.applications, | 35 |
| abstract_inverted_index.approximation | 108 |
| abstract_inverted_index.interpolation | 90 |
| abstract_inverted_index.requirements. | 103 |
| abstract_inverted_index.significantly | 94 |
| abstract_inverted_index.<div>The | 0 |
| abstract_inverted_index.algorithm-side | 80 |
| abstract_inverted_index.implementation. | 118 |
| abstract_inverted_index.implementations | 37, 62 |
| abstract_inverted_index.online-training | 123 |
| abstract_inverted_index.state-of-the-art | 56 |
| abstract_inverted_index.frames-per-second | 175 |
| abstract_inverted_index.hardware-expensive | 111 |
| abstract_inverted_index.layers.</div> | 181 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5069552691 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I145487455 |
| citation_normalized_percentile.value | 0.20378903 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |