An Efficient K-Means Algorithm and its Benchmarking against Other Algorithms Article Swipe
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.14257/ijgdc.2016.9.11.10
K-Means is a widely used partition based clustering algorithm famous for its simplicity and speed.It organizes input dataset into predefined number of clusters.K-Means has a major limitation --the number of clusters, K, need to be pre-specified as an input.Prespecifying K in the K-Means algorithm sometimes becomes difficult in absence of thorough domain knowledge, or for a new and unknown dataset.This limitation of advance specification of cluster number can lead to "forced" clustering of data and proper classification does not emerge.In this paper, a new algorithm based on the K-Means is developed.This algorithm has advance features of intelligent data analysis and automatic generation of appropriate number of clusters.The clusters generated by the new algorithm are compared against results obtained with the original K-Means and various other famous clustering algorithms.This comparative analysis is done using sets of real data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.14257/ijgdc.2016.9.11.10
- https://doi.org/10.14257/ijgdc.2016.9.11.10
- OA Status
- bronze
- Cited By
- 2
- References
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2977383210
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2977383210Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.14257/ijgdc.2016.9.11.10Digital Object Identifier
- Title
-
An Efficient K-Means Algorithm and its Benchmarking against Other AlgorithmsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-11-30Full publication date if available
- Authors
-
Anupama Chadha, Suresh KumarList of authors in order
- Landing page
-
https://doi.org/10.14257/ijgdc.2016.9.11.10Publisher landing page
- PDF URL
-
https://doi.org/10.14257/ijgdc.2016.9.11.10Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.14257/ijgdc.2016.9.11.10Direct OA link when available
- Concepts
-
Computer science, Algorithm, Benchmarking, Business, MarketingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1, 2018: 1Per-year citation counts (last 5 years)
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2977383210 |
|---|---|
| doi | https://doi.org/10.14257/ijgdc.2016.9.11.10 |
| ids.doi | https://doi.org/10.14257/ijgdc.2016.9.11.10 |
| ids.mag | 2977383210 |
| ids.openalex | https://openalex.org/W2977383210 |
| fwci | 0.16718238 |
| type | article |
| title | An Efficient K-Means Algorithm and its Benchmarking against Other Algorithms |
| biblio.issue | 11 |
| biblio.volume | 9 |
| biblio.last_page | 132 |
| biblio.first_page | 119 |
| topics[0].id | https://openalex.org/T10057 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9470999836921692 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face and Expression Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8411846160888672 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C11413529 |
| concepts[1].level | 1 |
| concepts[1].score | 0.8137442469596863 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[1].display_name | Algorithm |
| concepts[2].id | https://openalex.org/C86251818 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6931793093681335 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q816754 |
| concepts[2].display_name | Benchmarking |
| concepts[3].id | https://openalex.org/C144133560 |
| concepts[3].level | 0 |
| concepts[3].score | 0.0 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[3].display_name | Business |
| concepts[4].id | https://openalex.org/C162853370 |
| concepts[4].level | 1 |
| concepts[4].score | 0.0 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[4].display_name | Marketing |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8411846160888672 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/algorithm |
| keywords[1].score | 0.8137442469596863 |
| keywords[1].display_name | Algorithm |
| keywords[2].id | https://openalex.org/keywords/benchmarking |
| keywords[2].score | 0.6931793093681335 |
| keywords[2].display_name | Benchmarking |
| language | en |
| locations[0].id | doi:10.14257/ijgdc.2016.9.11.10 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210167513 |
| locations[0].source.issn | 2005-4262, 2207-6379 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2005-4262 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Grid and Distributed Computing |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.14257/ijgdc.2016.9.11.10 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Grid and Distributed Computing |
| locations[0].landing_page_url | https://doi.org/10.14257/ijgdc.2016.9.11.10 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5112626658 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Anupama Chadha |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I55016150 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Engineering and Technology, MRIU, Faridabad, India |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I55016150 |
| authorships[0].affiliations[1].raw_affiliation_string | Faculty of Computer Applications, MRIU, Faridabad, India |
| authorships[0].institutions[0].id | https://openalex.org/I55016150 |
| authorships[0].institutions[0].ror | https://ror.org/02kf4r633 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4411591084, https://openalex.org/I55016150 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Manav Rachna International Institute of Research and Studies |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Anupama Chadha |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Faculty of Computer Applications, MRIU, Faridabad, India, Faculty of Engineering and Technology, MRIU, Faridabad, India |
| authorships[1].author.id | https://openalex.org/A5084921480 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7774-7052 |
| authorships[1].author.display_name | Suresh Kumar |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Suresh Kumar |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.14257/ijgdc.2016.9.11.10 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An Efficient K-Means Algorithm and its Benchmarking against Other Algorithms |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10057 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9470999836921692 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face and Expression Recognition |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W4238897586, https://openalex.org/W435179959, https://openalex.org/W2619091065, https://openalex.org/W2059640416, https://openalex.org/W1490753184, https://openalex.org/W2284465472, https://openalex.org/W2291782699, https://openalex.org/W1993948687, https://openalex.org/W2011676020 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2018 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.14257/ijgdc.2016.9.11.10 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210167513 |
| best_oa_location.source.issn | 2005-4262, 2207-6379 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2005-4262 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Grid and Distributed Computing |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.14257/ijgdc.2016.9.11.10 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Grid and Distributed Computing |
| best_oa_location.landing_page_url | https://doi.org/10.14257/ijgdc.2016.9.11.10 |
| primary_location.id | doi:10.14257/ijgdc.2016.9.11.10 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210167513 |
| primary_location.source.issn | 2005-4262, 2207-6379 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2005-4262 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Grid and Distributed Computing |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.14257/ijgdc.2016.9.11.10 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Grid and Distributed Computing |
| primary_location.landing_page_url | https://doi.org/10.14257/ijgdc.2016.9.11.10 |
| publication_date | 2016-11-30 |
| publication_year | 2016 |
| referenced_works | https://openalex.org/W1594924988, https://openalex.org/W1990643970, https://openalex.org/W2134089414, https://openalex.org/W2319362789, https://openalex.org/W2110029789, https://openalex.org/W101836494, https://openalex.org/W2186176025, https://openalex.org/W2319660501, https://openalex.org/W2153233077, https://openalex.org/W2071949631, https://openalex.org/W2142827986, https://openalex.org/W2185597001 |
| referenced_works_count | 12 |
| abstract_inverted_index.K | 39 |
| abstract_inverted_index.a | 2, 24, 55, 82 |
| abstract_inverted_index.K, | 31 |
| abstract_inverted_index.an | 37 |
| abstract_inverted_index.as | 36 |
| abstract_inverted_index.be | 34 |
| abstract_inverted_index.by | 109 |
| abstract_inverted_index.in | 40, 47 |
| abstract_inverted_index.is | 1, 89, 130 |
| abstract_inverted_index.of | 21, 29, 49, 61, 64, 72, 95, 102, 105, 134 |
| abstract_inverted_index.on | 86 |
| abstract_inverted_index.or | 53 |
| abstract_inverted_index.to | 33, 69 |
| abstract_inverted_index.and | 13, 57, 74, 99, 122 |
| abstract_inverted_index.are | 113 |
| abstract_inverted_index.can | 67 |
| abstract_inverted_index.for | 10, 54 |
| abstract_inverted_index.has | 23, 92 |
| abstract_inverted_index.its | 11 |
| abstract_inverted_index.new | 56, 83, 111 |
| abstract_inverted_index.not | 78 |
| abstract_inverted_index.the | 41, 87, 110, 119 |
| abstract_inverted_index.data | 73, 97 |
| abstract_inverted_index.does | 77 |
| abstract_inverted_index.done | 131 |
| abstract_inverted_index.into | 18 |
| abstract_inverted_index.lead | 68 |
| abstract_inverted_index.need | 32 |
| abstract_inverted_index.real | 135 |
| abstract_inverted_index.sets | 133 |
| abstract_inverted_index.this | 80 |
| abstract_inverted_index.used | 4 |
| abstract_inverted_index.with | 118 |
| abstract_inverted_index.--the | 27 |
| abstract_inverted_index.based | 6, 85 |
| abstract_inverted_index.data. | 136 |
| abstract_inverted_index.input | 16 |
| abstract_inverted_index.major | 25 |
| abstract_inverted_index.other | 124 |
| abstract_inverted_index.using | 132 |
| abstract_inverted_index.domain | 51 |
| abstract_inverted_index.famous | 9, 125 |
| abstract_inverted_index.number | 20, 28, 66, 104 |
| abstract_inverted_index.paper, | 81 |
| abstract_inverted_index.proper | 75 |
| abstract_inverted_index.widely | 3 |
| abstract_inverted_index.K-Means | 0, 42, 88, 121 |
| abstract_inverted_index.absence | 48 |
| abstract_inverted_index.advance | 62, 93 |
| abstract_inverted_index.against | 115 |
| abstract_inverted_index.becomes | 45 |
| abstract_inverted_index.cluster | 65 |
| abstract_inverted_index.dataset | 17 |
| abstract_inverted_index.results | 116 |
| abstract_inverted_index.unknown | 58 |
| abstract_inverted_index.various | 123 |
| abstract_inverted_index."forced" | 70 |
| abstract_inverted_index.analysis | 98, 129 |
| abstract_inverted_index.clusters | 107 |
| abstract_inverted_index.compared | 114 |
| abstract_inverted_index.features | 94 |
| abstract_inverted_index.obtained | 117 |
| abstract_inverted_index.original | 120 |
| abstract_inverted_index.speed.It | 14 |
| abstract_inverted_index.thorough | 50 |
| abstract_inverted_index.algorithm | 8, 43, 84, 91, 112 |
| abstract_inverted_index.automatic | 100 |
| abstract_inverted_index.clusters, | 30 |
| abstract_inverted_index.difficult | 46 |
| abstract_inverted_index.emerge.In | 79 |
| abstract_inverted_index.generated | 108 |
| abstract_inverted_index.organizes | 15 |
| abstract_inverted_index.partition | 5 |
| abstract_inverted_index.sometimes | 44 |
| abstract_inverted_index.clustering | 7, 71, 126 |
| abstract_inverted_index.generation | 101 |
| abstract_inverted_index.knowledge, | 52 |
| abstract_inverted_index.limitation | 26, 60 |
| abstract_inverted_index.predefined | 19 |
| abstract_inverted_index.simplicity | 12 |
| abstract_inverted_index.appropriate | 103 |
| abstract_inverted_index.comparative | 128 |
| abstract_inverted_index.intelligent | 96 |
| abstract_inverted_index.clusters.The | 106 |
| abstract_inverted_index.dataset.This | 59 |
| abstract_inverted_index.pre-specified | 35 |
| abstract_inverted_index.specification | 63 |
| abstract_inverted_index.classification | 76 |
| abstract_inverted_index.developed.This | 90 |
| abstract_inverted_index.algorithms.This | 127 |
| abstract_inverted_index.clusters.K-Means | 22 |
| abstract_inverted_index.input.Prespecifying | 38 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.65598794 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |