An efficient model for predicting human diseases through miRNA based on multiple-types of contrastive learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3389/fmicb.2023.1325001
Multiple studies have demonstrated that microRNA (miRNA) can be deeply involved in the regulatory mechanism of human microbiota, thereby inducing disease. Developing effective methods to infer potential associations between microRNAs (miRNAs) and diseases can aid early diagnosis and treatment. Recent methods utilize machine learning or deep learning to predict miRNA-disease associations (MDAs), achieving state-of-the-art performance. However, the problem of sparse neighborhoods of nodes due to lack of data has not been well solved. To this end, we propose a new model named MTCL-MDA, which integrates multiple-types of contrastive learning strategies into a graph collaborative filtering model to predict potential MDAs. The model adopts a contrastive learning strategy based on topology, which alleviates the damage to model performance caused by sparse neighborhoods. In addition, the model also adopts a semantic-based contrastive learning strategy, which not only reduces the impact of noise introduced by topology-based contrastive learning, but also enhances the semantic information of nodes. Experimental results show that our model outperforms existing models on all evaluation metrics. Case analysis shows that our model can more accurately identify potential MDA, which is of great significance for the screening and diagnosis of real-life diseases. Our data and code are publicly available at: https://github.com/Lqingquan/MTCL-MDA .
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fmicb.2023.1325001
- https://www.frontiersin.org/articles/10.3389/fmicb.2023.1325001/pdf?isPublishedV2=False
- OA Status
- gold
- Cited By
- 3
- References
- 59
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389729396
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389729396Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fmicb.2023.1325001Digital Object Identifier
- Title
-
An efficient model for predicting human diseases through miRNA based on multiple-types of contrastive learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-14Full publication date if available
- Authors
-
Qingquan Liao, Xiangzheng Fu, Linlin Zhuo, Hao ChenList of authors in order
- Landing page
-
https://doi.org/10.3389/fmicb.2023.1325001Publisher landing page
- PDF URL
-
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1325001/pdf?isPublishedV2=FalseDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1325001/pdf?isPublishedV2=FalseDirect OA link when available
- Concepts
-
Computer science, Artificial intelligence, Machine learning, Mechanism (biology), Graph, Theoretical computer science, Epistemology, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
59Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389729396 |
|---|---|
| doi | https://doi.org/10.3389/fmicb.2023.1325001 |
| ids.doi | https://doi.org/10.3389/fmicb.2023.1325001 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38163075 |
| ids.openalex | https://openalex.org/W4389729396 |
| fwci | 0.66775521 |
| type | article |
| title | An efficient model for predicting human diseases through miRNA based on multiple-types of contrastive learning |
| biblio.issue | |
| biblio.volume | 14 |
| biblio.last_page | 1325001 |
| biblio.first_page | 1325001 |
| topics[0].id | https://openalex.org/T10062 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1306 |
| topics[0].subfield.display_name | Cancer Research |
| topics[0].display_name | MicroRNA in disease regulation |
| topics[1].id | https://openalex.org/T10515 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9997000098228455 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1306 |
| topics[1].subfield.display_name | Cancer Research |
| topics[1].display_name | Cancer-related molecular mechanisms research |
| topics[2].id | https://openalex.org/T11482 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.998199999332428 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | RNA modifications and cancer |
| is_xpac | False |
| apc_list.value | 2950 |
| apc_list.currency | USD |
| apc_list.value_usd | 2950 |
| apc_paid.value | 2950 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2950 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7521107196807861 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6151899099349976 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5962602496147156 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C89611455 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4692661166191101 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6804646 |
| concepts[3].display_name | Mechanism (biology) |
| concepts[4].id | https://openalex.org/C132525143 |
| concepts[4].level | 2 |
| concepts[4].score | 0.45359107851982117 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[4].display_name | Graph |
| concepts[5].id | https://openalex.org/C80444323 |
| concepts[5].level | 1 |
| concepts[5].score | 0.20712968707084656 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[5].display_name | Theoretical computer science |
| concepts[6].id | https://openalex.org/C111472728 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[6].display_name | Epistemology |
| concepts[7].id | https://openalex.org/C138885662 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[7].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7521107196807861 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6151899099349976 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.5962602496147156 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/mechanism |
| keywords[3].score | 0.4692661166191101 |
| keywords[3].display_name | Mechanism (biology) |
| keywords[4].id | https://openalex.org/keywords/graph |
| keywords[4].score | 0.45359107851982117 |
| keywords[4].display_name | Graph |
| keywords[5].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[5].score | 0.20712968707084656 |
| keywords[5].display_name | Theoretical computer science |
| language | en |
| locations[0].id | doi:10.3389/fmicb.2023.1325001 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2484704948 |
| locations[0].source.issn | 1664-302X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1664-302X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Microbiology |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/articles/10.3389/fmicb.2023.1325001/pdf?isPublishedV2=False |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Microbiology |
| locations[0].landing_page_url | https://doi.org/10.3389/fmicb.2023.1325001 |
| locations[1].id | pmid:38163075 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in microbiology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38163075 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10755968 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10755968/pdf/fmicb-14-1325001.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Front Microbiol |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10755968 |
| locations[3].id | pmh:oai:doaj.org/article:95e339f23b6b4d84bcd30a31c2c40dca |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Frontiers in Microbiology, Vol 14 (2023) |
| locations[3].landing_page_url | https://doaj.org/article/95e339f23b6b4d84bcd30a31c2c40dca |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5045871222 |
| authorships[0].author.orcid | https://orcid.org/0009-0004-2488-9016 |
| authorships[0].author.display_name | Qingquan Liao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I16609230 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Computer Science and Electronic Engineering, Hunan University, China |
| authorships[0].institutions[0].id | https://openalex.org/I16609230 |
| authorships[0].institutions[0].ror | https://ror.org/05htk5m33 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I16609230 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Hunan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qingquan Liao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Computer Science and Electronic Engineering, Hunan University, China |
| authorships[1].author.id | https://openalex.org/A5044283271 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6840-2573 |
| authorships[1].author.display_name | Xiangzheng Fu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I16609230 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Computer Science and Electronic Engineering, Hunan University, China |
| authorships[1].institutions[0].id | https://openalex.org/I16609230 |
| authorships[1].institutions[0].ror | https://ror.org/05htk5m33 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I16609230 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Hunan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiangzheng Fu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Computer Science and Electronic Engineering, Hunan University, China |
| authorships[2].author.id | https://openalex.org/A5004683765 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6586-0533 |
| authorships[2].author.display_name | Linlin Zhuo |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I146620803, https://openalex.org/I4400573270 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Data Science and Artificial Intelligence, Wenzhou University of Technology, China |
| authorships[2].institutions[0].id | https://openalex.org/I4400573270 |
| authorships[2].institutions[0].ror | https://ror.org/03dd7qj98 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4400573270 |
| authorships[2].institutions[0].country_code | |
| authorships[2].institutions[0].display_name | Wenzhou University of Technology |
| authorships[2].institutions[1].id | https://openalex.org/I146620803 |
| authorships[2].institutions[1].ror | https://ror.org/020hxh324 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I146620803 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Wenzhou University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Linlin Zhuo |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Data Science and Artificial Intelligence, Wenzhou University of Technology, China |
| authorships[3].author.id | https://openalex.org/A5100353533 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2700-8219 |
| authorships[3].author.display_name | Hao Chen |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I16609230 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Computer Science and Electronic Engineering, Hunan University, China |
| authorships[3].institutions[0].id | https://openalex.org/I16609230 |
| authorships[3].institutions[0].ror | https://ror.org/05htk5m33 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I16609230 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Hunan University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Hao Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Computer Science and Electronic Engineering, Hunan University, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/articles/10.3389/fmicb.2023.1325001/pdf?isPublishedV2=False |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | An efficient model for predicting human diseases through miRNA based on multiple-types of contrastive learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10062 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1306 |
| primary_topic.subfield.display_name | Cancer Research |
| primary_topic.display_name | MicroRNA in disease regulation |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4313488044, https://openalex.org/W3209574120, https://openalex.org/W4312192474, https://openalex.org/W4210805261 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3389/fmicb.2023.1325001 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2484704948 |
| best_oa_location.source.issn | 1664-302X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1664-302X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Microbiology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fmicb.2023.1325001/pdf?isPublishedV2=False |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Microbiology |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fmicb.2023.1325001 |
| primary_location.id | doi:10.3389/fmicb.2023.1325001 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2484704948 |
| primary_location.source.issn | 1664-302X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1664-302X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Microbiology |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fmicb.2023.1325001/pdf?isPublishedV2=False |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Microbiology |
| primary_location.landing_page_url | https://doi.org/10.3389/fmicb.2023.1325001 |
| publication_date | 2023-12-14 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W6798028545, https://openalex.org/W2014946489, https://openalex.org/W2169234352, https://openalex.org/W3111392271, https://openalex.org/W1990061381, https://openalex.org/W2395114866, https://openalex.org/W2895927009, https://openalex.org/W2410390867, https://openalex.org/W2022732522, https://openalex.org/W2962928958, https://openalex.org/W2005532281, https://openalex.org/W2159444732, https://openalex.org/W3048858802, https://openalex.org/W2026570544, https://openalex.org/W2548805615, https://openalex.org/W4384664737, https://openalex.org/W2886514991, https://openalex.org/W3158158224, https://openalex.org/W2109483324, https://openalex.org/W4246271082, https://openalex.org/W3094371038, https://openalex.org/W2816757187, https://openalex.org/W2126619650, https://openalex.org/W2128768066, https://openalex.org/W4232023503, https://openalex.org/W2064214040, https://openalex.org/W3176269371, https://openalex.org/W4293812148, https://openalex.org/W3093996932, https://openalex.org/W4210548518, https://openalex.org/W4225537122, https://openalex.org/W1979104937, https://openalex.org/W2151319884, https://openalex.org/W2096253076, https://openalex.org/W2161426724, https://openalex.org/W2588714305, https://openalex.org/W4226097900, https://openalex.org/W2125826054, https://openalex.org/W2902246085, https://openalex.org/W6680830989, https://openalex.org/W2001911979, https://openalex.org/W2047535851, https://openalex.org/W4312084649, https://openalex.org/W4311823641, https://openalex.org/W4307502334, https://openalex.org/W2111663113, https://openalex.org/W1928264125, https://openalex.org/W3095707208, https://openalex.org/W4281553978, https://openalex.org/W2601934706, https://openalex.org/W2902400385, https://openalex.org/W2258129851, https://openalex.org/W2972020367, https://openalex.org/W2789567770, https://openalex.org/W3001440478, https://openalex.org/W2124756133, https://openalex.org/W3178103610, https://openalex.org/W2158135353, https://openalex.org/W2140310134 |
| referenced_works_count | 59 |
| abstract_inverted_index.. | 200 |
| abstract_inverted_index.a | 78, 91, 103, 127 |
| abstract_inverted_index.In | 121 |
| abstract_inverted_index.To | 73 |
| abstract_inverted_index.be | 8 |
| abstract_inverted_index.by | 118, 141 |
| abstract_inverted_index.in | 11 |
| abstract_inverted_index.is | 179 |
| abstract_inverted_index.of | 15, 58, 61, 66, 86, 138, 151, 180, 188 |
| abstract_inverted_index.on | 108, 162 |
| abstract_inverted_index.or | 44 |
| abstract_inverted_index.to | 24, 47, 64, 96, 114 |
| abstract_inverted_index.we | 76 |
| abstract_inverted_index.Our | 191 |
| abstract_inverted_index.The | 100 |
| abstract_inverted_index.aid | 34 |
| abstract_inverted_index.all | 163 |
| abstract_inverted_index.and | 31, 37, 186, 193 |
| abstract_inverted_index.are | 195 |
| abstract_inverted_index.at: | 198 |
| abstract_inverted_index.but | 145 |
| abstract_inverted_index.can | 7, 33, 172 |
| abstract_inverted_index.due | 63 |
| abstract_inverted_index.for | 183 |
| abstract_inverted_index.has | 68 |
| abstract_inverted_index.new | 79 |
| abstract_inverted_index.not | 69, 133 |
| abstract_inverted_index.our | 157, 170 |
| abstract_inverted_index.the | 12, 56, 112, 123, 136, 148, 184 |
| abstract_inverted_index.Case | 166 |
| abstract_inverted_index.MDA, | 177 |
| abstract_inverted_index.also | 125, 146 |
| abstract_inverted_index.been | 70 |
| abstract_inverted_index.code | 194 |
| abstract_inverted_index.data | 67, 192 |
| abstract_inverted_index.deep | 45 |
| abstract_inverted_index.end, | 75 |
| abstract_inverted_index.have | 2 |
| abstract_inverted_index.into | 90 |
| abstract_inverted_index.lack | 65 |
| abstract_inverted_index.more | 173 |
| abstract_inverted_index.only | 134 |
| abstract_inverted_index.show | 155 |
| abstract_inverted_index.that | 4, 156, 169 |
| abstract_inverted_index.this | 74 |
| abstract_inverted_index.well | 71 |
| abstract_inverted_index.MDAs. | 99 |
| abstract_inverted_index.based | 107 |
| abstract_inverted_index.early | 35 |
| abstract_inverted_index.graph | 92 |
| abstract_inverted_index.great | 181 |
| abstract_inverted_index.human | 16 |
| abstract_inverted_index.infer | 25 |
| abstract_inverted_index.model | 80, 95, 101, 115, 124, 158, 171 |
| abstract_inverted_index.named | 81 |
| abstract_inverted_index.nodes | 62 |
| abstract_inverted_index.noise | 139 |
| abstract_inverted_index.shows | 168 |
| abstract_inverted_index.which | 83, 110, 132, 178 |
| abstract_inverted_index.Recent | 39 |
| abstract_inverted_index.adopts | 102, 126 |
| abstract_inverted_index.caused | 117 |
| abstract_inverted_index.damage | 113 |
| abstract_inverted_index.deeply | 9 |
| abstract_inverted_index.impact | 137 |
| abstract_inverted_index.models | 161 |
| abstract_inverted_index.nodes. | 152 |
| abstract_inverted_index.sparse | 59, 119 |
| abstract_inverted_index.(MDAs), | 51 |
| abstract_inverted_index.(miRNA) | 6 |
| abstract_inverted_index.between | 28 |
| abstract_inverted_index.machine | 42 |
| abstract_inverted_index.methods | 23, 40 |
| abstract_inverted_index.predict | 48, 97 |
| abstract_inverted_index.problem | 57 |
| abstract_inverted_index.propose | 77 |
| abstract_inverted_index.reduces | 135 |
| abstract_inverted_index.results | 154 |
| abstract_inverted_index.solved. | 72 |
| abstract_inverted_index.studies | 1 |
| abstract_inverted_index.thereby | 18 |
| abstract_inverted_index.utilize | 41 |
| abstract_inverted_index.(miRNAs) | 30 |
| abstract_inverted_index.However, | 55 |
| abstract_inverted_index.Multiple | 0 |
| abstract_inverted_index.analysis | 167 |
| abstract_inverted_index.disease. | 20 |
| abstract_inverted_index.diseases | 32 |
| abstract_inverted_index.enhances | 147 |
| abstract_inverted_index.existing | 160 |
| abstract_inverted_index.identify | 175 |
| abstract_inverted_index.inducing | 19 |
| abstract_inverted_index.involved | 10 |
| abstract_inverted_index.learning | 43, 46, 88, 105, 130 |
| abstract_inverted_index.metrics. | 165 |
| abstract_inverted_index.microRNA | 5 |
| abstract_inverted_index.publicly | 196 |
| abstract_inverted_index.semantic | 149 |
| abstract_inverted_index.strategy | 106 |
| abstract_inverted_index.MTCL-MDA, | 82 |
| abstract_inverted_index.achieving | 52 |
| abstract_inverted_index.addition, | 122 |
| abstract_inverted_index.available | 197 |
| abstract_inverted_index.diagnosis | 36, 187 |
| abstract_inverted_index.diseases. | 190 |
| abstract_inverted_index.effective | 22 |
| abstract_inverted_index.filtering | 94 |
| abstract_inverted_index.learning, | 144 |
| abstract_inverted_index.mechanism | 14 |
| abstract_inverted_index.microRNAs | 29 |
| abstract_inverted_index.potential | 26, 98, 176 |
| abstract_inverted_index.real-life | 189 |
| abstract_inverted_index.screening | 185 |
| abstract_inverted_index.strategy, | 131 |
| abstract_inverted_index.topology, | 109 |
| abstract_inverted_index.Developing | 21 |
| abstract_inverted_index.accurately | 174 |
| abstract_inverted_index.alleviates | 111 |
| abstract_inverted_index.evaluation | 164 |
| abstract_inverted_index.integrates | 84 |
| abstract_inverted_index.introduced | 140 |
| abstract_inverted_index.regulatory | 13 |
| abstract_inverted_index.strategies | 89 |
| abstract_inverted_index.treatment. | 38 |
| abstract_inverted_index.contrastive | 87, 104, 129, 143 |
| abstract_inverted_index.information | 150 |
| abstract_inverted_index.microbiota, | 17 |
| abstract_inverted_index.outperforms | 159 |
| abstract_inverted_index.performance | 116 |
| abstract_inverted_index.Experimental | 153 |
| abstract_inverted_index.associations | 27, 50 |
| abstract_inverted_index.demonstrated | 3 |
| abstract_inverted_index.performance. | 54 |
| abstract_inverted_index.significance | 182 |
| abstract_inverted_index.collaborative | 93 |
| abstract_inverted_index.miRNA-disease | 49 |
| abstract_inverted_index.neighborhoods | 60 |
| abstract_inverted_index.multiple-types | 85 |
| abstract_inverted_index.neighborhoods. | 120 |
| abstract_inverted_index.semantic-based | 128 |
| abstract_inverted_index.topology-based | 142 |
| abstract_inverted_index.state-of-the-art | 53 |
| abstract_inverted_index.https://github.com/Lqingquan/MTCL-MDA | 199 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.79147233 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |