An efficient Wasserstein-distance approach for reconstructing jump-diffusion processes using parameterized neural networks Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2406.01653
We analyze the Wasserstein distance ($W$-distance) between two probability distributions associated with two multidimensional jump-diffusion processes. Specifically, we analyze a temporally decoupled squared $W_2$-distance, which provides both upper and lower bounds associated with the discrepancies in the drift, diffusion, and jump amplitude functions between the two jump-diffusion processes. Then, we propose a temporally decoupled squared $W_2$-distance method for efficiently reconstructing unknown jump-diffusion processes from data using parameterized neural networks. We further show its performance can be enhanced by utilizing prior information on the drift function of the jump-diffusion process. The effectiveness of our proposed reconstruction method is demonstrated across several examples and applications.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2406.01653
- https://arxiv.org/pdf/2406.01653
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401102981
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401102981Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2406.01653Digital Object Identifier
- Title
-
An efficient Wasserstein-distance approach for reconstructing jump-diffusion processes using parameterized neural networksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-03Full publication date if available
- Authors
-
Mingtao Xia, Xiangting Li, Qijing Shen, Tom ChouList of authors in order
- Landing page
-
https://arxiv.org/abs/2406.01653Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2406.01653Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2406.01653Direct OA link when available
- Concepts
-
Parameterized complexity, Jump, Artificial neural network, Diffusion, Jump diffusion, Computer science, Algorithm, Mathematics, Artificial intelligence, Physics, Quantum mechanics, ThermodynamicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401102981 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2406.01653 |
| ids.doi | https://doi.org/10.48550/arxiv.2406.01653 |
| ids.openalex | https://openalex.org/W4401102981 |
| fwci | |
| type | preprint |
| title | An efficient Wasserstein-distance approach for reconstructing jump-diffusion processes using parameterized neural networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11206 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.8980000019073486 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Model Reduction and Neural Networks |
| topics[1].id | https://openalex.org/T11304 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.8463000059127808 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Advanced Neuroimaging Techniques and Applications |
| topics[2].id | https://openalex.org/T12603 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.8245000243186951 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3106 |
| topics[2].subfield.display_name | Nuclear and High Energy Physics |
| topics[2].display_name | NMR spectroscopy and applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C165464430 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8885791301727295 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1570441 |
| concepts[0].display_name | Parameterized complexity |
| concepts[1].id | https://openalex.org/C2780695682 |
| concepts[1].level | 2 |
| concepts[1].score | 0.752109169960022 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4005959 |
| concepts[1].display_name | Jump |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6394469738006592 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C69357855 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5884020924568176 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q163214 |
| concepts[3].display_name | Diffusion |
| concepts[4].id | https://openalex.org/C2779664328 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5691689848899841 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6311158 |
| concepts[4].display_name | Jump diffusion |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.537610650062561 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3313487470149994 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3221891522407532 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.26923370361328125 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.09889009594917297 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C62520636 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[10].display_name | Quantum mechanics |
| concepts[11].id | https://openalex.org/C97355855 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[11].display_name | Thermodynamics |
| keywords[0].id | https://openalex.org/keywords/parameterized-complexity |
| keywords[0].score | 0.8885791301727295 |
| keywords[0].display_name | Parameterized complexity |
| keywords[1].id | https://openalex.org/keywords/jump |
| keywords[1].score | 0.752109169960022 |
| keywords[1].display_name | Jump |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.6394469738006592 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/diffusion |
| keywords[3].score | 0.5884020924568176 |
| keywords[3].display_name | Diffusion |
| keywords[4].id | https://openalex.org/keywords/jump-diffusion |
| keywords[4].score | 0.5691689848899841 |
| keywords[4].display_name | Jump diffusion |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.537610650062561 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.3313487470149994 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.3221891522407532 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.26923370361328125 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.09889009594917297 |
| keywords[9].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2406.01653 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2406.01653 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2406.01653 |
| locations[1].id | doi:10.48550/arxiv.2406.01653 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2406.01653 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5088069608 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2116-4712 |
| authorships[0].author.display_name | Mingtao Xia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xia, Mingtao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5032528993 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5238-7364 |
| authorships[1].author.display_name | Xiangting Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Xiangting |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5104326364 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Qijing Shen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shen, Qijing |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5044310323 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0785-6349 |
| authorships[3].author.display_name | Tom Chou |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Chou, Tom |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2406.01653 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-07-31T00:00:00 |
| display_name | An efficient Wasserstein-distance approach for reconstructing jump-diffusion processes using parameterized neural networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11206 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.8980000019073486 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Model Reduction and Neural Networks |
| related_works | https://openalex.org/W2648988829, https://openalex.org/W2507439616, https://openalex.org/W2352779812, https://openalex.org/W3124741583, https://openalex.org/W362430865, https://openalex.org/W2954755983, https://openalex.org/W2362743624, https://openalex.org/W3121278253, https://openalex.org/W2390566486, https://openalex.org/W3192755727 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2406.01653 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2406.01653 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2406.01653 |
| primary_location.id | pmh:oai:arXiv.org:2406.01653 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2406.01653 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2406.01653 |
| publication_date | 2024-06-03 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 19, 51 |
| abstract_inverted_index.We | 0, 69 |
| abstract_inverted_index.be | 75 |
| abstract_inverted_index.by | 77 |
| abstract_inverted_index.in | 35 |
| abstract_inverted_index.is | 96 |
| abstract_inverted_index.of | 85, 91 |
| abstract_inverted_index.on | 81 |
| abstract_inverted_index.we | 17, 49 |
| abstract_inverted_index.The | 89 |
| abstract_inverted_index.and | 28, 39, 101 |
| abstract_inverted_index.can | 74 |
| abstract_inverted_index.for | 57 |
| abstract_inverted_index.its | 72 |
| abstract_inverted_index.our | 92 |
| abstract_inverted_index.the | 2, 33, 36, 44, 82, 86 |
| abstract_inverted_index.two | 7, 12, 45 |
| abstract_inverted_index.both | 26 |
| abstract_inverted_index.data | 64 |
| abstract_inverted_index.from | 63 |
| abstract_inverted_index.jump | 40 |
| abstract_inverted_index.show | 71 |
| abstract_inverted_index.with | 11, 32 |
| abstract_inverted_index.Then, | 48 |
| abstract_inverted_index.drift | 83 |
| abstract_inverted_index.lower | 29 |
| abstract_inverted_index.prior | 79 |
| abstract_inverted_index.upper | 27 |
| abstract_inverted_index.using | 65 |
| abstract_inverted_index.which | 24 |
| abstract_inverted_index.across | 98 |
| abstract_inverted_index.bounds | 30 |
| abstract_inverted_index.drift, | 37 |
| abstract_inverted_index.method | 56, 95 |
| abstract_inverted_index.neural | 67 |
| abstract_inverted_index.analyze | 1, 18 |
| abstract_inverted_index.between | 6, 43 |
| abstract_inverted_index.further | 70 |
| abstract_inverted_index.propose | 50 |
| abstract_inverted_index.several | 99 |
| abstract_inverted_index.squared | 22, 54 |
| abstract_inverted_index.unknown | 60 |
| abstract_inverted_index.distance | 4 |
| abstract_inverted_index.enhanced | 76 |
| abstract_inverted_index.examples | 100 |
| abstract_inverted_index.function | 84 |
| abstract_inverted_index.process. | 88 |
| abstract_inverted_index.proposed | 93 |
| abstract_inverted_index.provides | 25 |
| abstract_inverted_index.amplitude | 41 |
| abstract_inverted_index.decoupled | 21, 53 |
| abstract_inverted_index.functions | 42 |
| abstract_inverted_index.networks. | 68 |
| abstract_inverted_index.processes | 62 |
| abstract_inverted_index.utilizing | 78 |
| abstract_inverted_index.associated | 10, 31 |
| abstract_inverted_index.diffusion, | 38 |
| abstract_inverted_index.processes. | 15, 47 |
| abstract_inverted_index.temporally | 20, 52 |
| abstract_inverted_index.Wasserstein | 3 |
| abstract_inverted_index.efficiently | 58 |
| abstract_inverted_index.information | 80 |
| abstract_inverted_index.performance | 73 |
| abstract_inverted_index.probability | 8 |
| abstract_inverted_index.demonstrated | 97 |
| abstract_inverted_index.Specifically, | 16 |
| abstract_inverted_index.applications. | 102 |
| abstract_inverted_index.discrepancies | 34 |
| abstract_inverted_index.distributions | 9 |
| abstract_inverted_index.effectiveness | 90 |
| abstract_inverted_index.parameterized | 66 |
| abstract_inverted_index.$W_2$-distance | 55 |
| abstract_inverted_index.($W$-distance) | 5 |
| abstract_inverted_index.jump-diffusion | 14, 46, 61, 87 |
| abstract_inverted_index.reconstructing | 59 |
| abstract_inverted_index.reconstruction | 94 |
| abstract_inverted_index.$W_2$-distance, | 23 |
| abstract_inverted_index.multidimensional | 13 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |